Thursday, September 21, 2017

How Strong is hot Jupiter HD 209458b's Magnetic Field?

Effect of stellar wind-induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

Authors:


Erkaev et al

Abstract:


We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non- or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet’s upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet (EUV) radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photo-ionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ≈0.5–1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10–20% that of Jupiter.

GENESIS: New Self-Consistent Models of Exoplanetary Spectra

GENESIS: New Self-Consistent Models of Exoplanetary Spectra

Authors:


Gandhi et al

Abstract:
We are entering the era of high-precision and high-resolution spectroscopy of exoplanets. Such observations herald the need for robust self-consistent spectral models of exoplanetary atmospheres to investigate intricate atmospheric processes and to make observable predictions. Spectral models of plane-parallel exoplanetary atmospheres exist, mostly adapted from other astrophysical applications, with different levels of sophistication and accuracy. There is a growing need for a new generation of models custom-built for exoplanets and incorporating state-of-the-art numerical methods and opacities. The present work is a step in this direction. Here we introduce GENESIS, a plane-parallel, self-consistent, line-by-line exoplanetary atmospheric modelling code which includes (a) formal solution of radiative transfer using the Feautrier method, (b) radiative-convective equilibrium with temperature correction based on the Rybicki linearisation scheme, (c) latest absorption cross sections, and (d) internal flux and external irradiation, under the assumptions of hydrostatic equilibrium, local thermodynamic equilibrium and thermochemical equilibrium. We demonstrate the code here with cloud-free models of giant exoplanetary atmospheres over a range of equilibrium temperatures, metallicities, C/O ratios and spanning non-irradiated and irradiated planets, with and without thermal inversions. We provide the community with theoretical emergent spectra and pressure-temperature profiles over this range, along with those for several known hot Jupiters. The code can generate self-consistent spectra at high resolution and has the potential to be integrated into general circulation and non-equilibrium chemistry models as it is optimised for efficiency and convergence. GENESIS paves the way for high-fidelity remote sensing of exoplanetary atmospheres at high resolution with current and upcoming observations.

Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

Transiting Exoplanet Monitoring Project (TEMP). II. Refined System Parameters and Transit Timing Analysis of HAT-P-33b

Authors:


Wang et al

Abstract:

We present ten R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project (TEMP). The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6−3.0mmag. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet-to-star radius ratio (RP/R∗), the ingress/egress duration (τ) and the total duration (T14), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3M⊕ near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.

Wednesday, September 20, 2017

Stability of Multiplanetary Systems in Star Clusters

Stability of Multiplanetary Systems in Star Clusters

Authors:


Cai et al

Abstract:
Most stars form in star clusters and stellar associated. To understand the roles of star cluster environments in shaping the dynamical evolution of planetary systems, we carry out direct N-body simulations of four planetary systems models in three different star cluster environments with respectively N=2k, 8k and 32k stars. In each cluster, an ensemble of initially identical planetary systems are assigned to solar-type stars with ∼1M⊙ and evolved for 50~Myr. We found that following the depletion of protoplanetary disks, external perturbations and planet-planet interactions are two driving mechanisms responsible for the destabilization of planetary systems. The planet survival rate varies from ∼95% in the N=2k cluster to ∼60% in the N=32k cluster, which suggests that most planetary systems can indeed survive in low-mass clusters, except in the central regions. We also find that planet ejections through stellar encounters are cumulative processes, as only ∼3% of encounters are strong enough to excite the eccentricity by Δe≥0.5. Short-period planets can be perturbed through orbit crossings with long-period planets. When taking into account planet-planet interactions, the planet ejection rate nearly doubles, and therefore multiplicity contributes to the vulnerability of planetary systems. In each ensemble, ∼0.2% of planetary orbits become retrograde due to random directions of stellar encounters. Our results predict that young low-mass star clusters are promising sites for next-generation planet surveys, yet low planet detection rates are expected in dense globular clusters such as 47 Tuc. Nevertheless, planets in denser stellar environments are likely to have shorter orbital periods, which enhances their detectability.

Radiative Transfer for Exoplanet Atmospheres

Radiative Transfer for Exoplanet Atmospheres


Authors:

Heng et al

Abstract:

Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.

On the formation of multiple concentric rings and gaps in protoplanetary disks

On the formation of multiple concentric rings and gaps in protoplanetary disks

Authors:

Bae et al

Abstract:

As spiral waves driven by a planet in a gaseous disk steepen into a shock, they deposit angular momentum, opening a gap in the disk. This has been well studied using both linear theory and numerical simulations, but so far, only for the primary spiral arm -- the one directly attached to the planet. Using two-dimensional hydrodynamic simulations, we show that the secondary and tertiary arms driven by a planet can also open gaps as they steepen into shocks. The depths of the secondary/tertiary gaps in surface density grow with time in a low viscosity disk (α=5×10−5), so even low-mass planets (e.g., super-Earth or mini-Neptune) embedded in the disk can open multiple observable gaps, provided that sufficient time has passed. Applying our results to the HL Tau disk, we show that a single 30 Earth-mass planet embedded in the ring at 68.8 au (B5) can reasonably well reproduce the positions of the two major gaps at 13.2 and 32.3 au (D1 and D2), and roughly reproduce two other major gaps at 64.2 and 74.7 au (D5 and D6) seen in the mm continuum. The positions of secondary/tertiary gaps are found to be sensitive to the planetary mass and the disk temperature profile, so with accurate observational measurements on the temperature structure we can use the positions of multiple gaps to constrain the mass of the planet. We also comment on the gaps seen in the TW Hya and HD 163296 disk.

Tuesday, September 19, 2017

Detecting Exoplanets in S Type Systems Around Eclipsing Binary Stars

How eclipse time variations, eclipse duration variations and radial velocities can reveal S-type planets in close eclipsing binaries 

Authors:


Oshagh et al

Abstract:

While about a dozen transiting planets have been found in wide orbits around an inner, close stellar binary (so-called P-type planets), no planet has yet been detected orbiting only one star (a so-called S-type planet) in an eclipsing binary. This is despite a large number of eclipsing binary systems discovered with the Kepler telescope. Here we propose a new detection method for these S-type planets, which uses a correlation between the stellar radial velocities (RVs), eclipse timing variations (ETVs) and eclipse duration variations (EDVs). We test the capability of this technique by simulating a realistic benchmark system and demonstrate its detectability with existing high-accuracy RV and photometry instruments. We illustrate that with a small number of RV observations, the RV–ETV diagrams allows us to distinguish between prograde and retrograde planetary orbits and also the planetary mass can be estimated if the stellar cross-correlation functions can be disentangled. We also identify a new (though minimal) contribution of S-type planets to the Rossiter–McLaughlin effect in eclipsing stellar binaries. We finally explore possible detection of exomoons around transiting luminous giant planets and find that the precision required to detect moons in the RV curves of their host planets is of the order of cm s−1 and therefore not accessible with current instruments.