Friday, October 31, 2014

Competitive Spectroscopic Confirmation of KOI-1299b: a Warm Jupiter in a Very Eccentric Orbit Around a Red Giant

Ortiz et al

Abstract:

Context:

Planets around evolved stars exhibit different properties than those orbiting main-sequence stars. One of the most notable differences is the paucity of planets orbiting at short distance from giant stars (a less than 0.5 AU). Detecting these rare close-in planets can shed light on planetary system formation and evolution mechanisms.

Aims:

We study the Kepler object KOI-1299, an evolved star ascending the red giant branch. We aim at confirming the planetary nature of the Jupiter-like transit signal recurring every ~52.5 days, and characterizing the orbital elements of the system.

Methods:

We derive radial velocities from multi-epoch high-resolution spectra of KOI-1299 acquired with CAFE at the 2.2m telescope of Calar Alto Observatory and FIES at the 2.56m Nordic Optical Telescope of Roque de los Muchachos Observatory.

Results:

We confirm the planetary nature of the transiting object KOI-1299b. We find a planetary mass of Mp=5.86 +\- 0.05 Mjup and an eccentricity of e=0.479 +\- 0.004. With a semi-major axis of a=0.304 +\- 0.007 AU, KOI-1299b is the first bona-fide warm-Jupiter detected to transit a giant star. We also find a radial velocity linear trend of 0.44 +\- 0.04 m s−1 d−1, which suggests the presence of a third object in the system. Current models of planetary evolution in the post main-sequence phase predict that KOI-1299b will be most likely engulfed by its host star before the latter reaches the tip of the red giant branch.

A Competitive Confirmation of KOI-1299b Through Radial Velocity Detection

KOI-1299 b: a massive planet in a highly eccentric orbit transiting a red giant

Authors:

Ciceri et al

Abstract:

We confirm the planetary nature of the Kepler object of interest KOI-1299 b. We accurately constrained its mass and eccentricity by high-precision radial velocity measurements obtained with the CAFE spectrograph at the CAHA 2.2-m telescope. By a simultaneous fit of these new data and Kepler photometry, we found that KOI-1299 b is a dense transiting exoplanet, having a mass of Mp = 4.87 +/- 0.48 MJup and radius of Rp = 1.120 +/- 0.036 RJup. The planet revolves around a K giant star, ascending the red giant branch, every 52.5 d, moving on a highly eccentric orbit with e = 0.535 +/- 0.030. By analysing two NIR high-resolution images, we found that a star occurs at 1.1 from KOI-1299, but it is too faint to cause significant effects on the transit depth. Together with Kepler-56 and Kepler-91, KOI-1299 occupies an almost-desert region of parameter space, which is important to constrain the evolutionary processes of planetary systems.

Are Kozai-Lidov Oscillations Responsible for Warm Jupiter System Formation?

A Class of Warm Jupiters with Mutually Inclined, Apsidally Misaligned, Close Friends

Authors:

Dawson et al

Abstract:

The orbits of giant extrasolar planets often have surprisingly small semi-major axes, large eccentricities, or severe misalignments between their normals and their host stars' spin axes. In some formation scenarios invoking Kozai-Lidov oscillations, an external planetary companion drives a planet onto an orbit having these properties. The mutual inclinations for Kozai-Lidov oscillations can be large and have not been confirmed observationally. Here we deduce that observed eccentric warm Jupiters with eccentric giant companions have mutual inclinations that oscillate between 35-65 deg. Our inference is based on the pairs' observed apsidal separations, which cluster near 90 deg. The near-orthogonality of periapse directions is effected by the outer companion's quadrupolar and octupolar potentials. These systems may be undergoing a stalled version of tidal migration that produces warm Jupiters over hot Jupiters, and provide evidence for a population of multi-planet systems that are not flat and have been sculpted by Kozai-Lidov oscillations.

Thursday, October 30, 2014

Binary System HU Aquarii Does not Have a Circumbinary Exoplanet

Testing the planetary models of HU Aquarii

Authors:

Bours et al

Abstract:

We present new eclipse observations of the polar (i.e. semidetached magnetic white dwarf + M-dwarf binary) HU Aqr, and mid-egress times for each eclipse, which continue to be observed increasingly early. Recent eclipses occurred more than 70 s earlier than the prediction from the latest model that invoked a single circumbinary planet to explain the observed orbital period variations, thereby conclusively proving this model to be incorrect. Using ULTRACAM data, we show that mid-egress times determined for simultaneous data taken at different wavelengths agree with each other. The large variations in the observed eclipse times cannot be explained by planetary models containing up to three planets, because of poor fits to the data as well as orbital instability on short time-scales. The peak-to-peak amplitude of the O−C diagram of almost 140 s is also too great to be caused by Applegate's mechanism, movement of the accretion spot on the surface of the white dwarf, or by asynchronous rotation of the white dwarf. What does cause the observed eclipse time variations remains a mystery.

OGLE-BLG182.1.162852: An Eclipsing Binary with a Circumstellar Disk

OGLE-BLG182.1.162852: An Eclipsing Binary with a Circumstellar Disk

Authors:

Rattenbury et al

Abstract:

We present the discovery of a plausible disk-eclipse system OGLE-BLG182.1.162852. The OGLE light curve for OGLE-BLG182.1.162852 shows three episodes of dimming by I≃2−3 magnitudes, separated by 1277 days. The shape of the light curve during dimming events is very similar to that of known disk eclipse system OGLE-LMC-ECL-11893 (Dong et al. 2014). The event is presently undergoing a dimming event, predicted to end on December 30th, 2014. We encourage spectroscopic and multi-band photometric observations now. The next dimming episode for OGLE-BLG182.1.162852 is expected to occur in March 2018.

OGLE-2008-BLG-092Lb: a 4 Uranus Mass Gas Giant Around the Primary of a Binary System

TRIPLE MICROLENS OGLE-2008-BLG-092L: BINARY STELLAR SYSTEM WITH A CIRCUMPRIMARY URANUS-TYPE PLANET

Authors:


Poleski et al

Abstract:


We present the gravitational microlensing discovery of a 4 M Uranus planet that orbits a 0.7 M ☉ star at ≈18 AU. This is the first known analog of Uranus. Similar planets, i.e., cold ice giants, are inaccessible to either radial velocity or transit methods because of the long orbital periods, while low reflected light prevents direct imaging. We discuss how similar planets may contaminate the sample of the very short microlensing events that are interpreted as free-floating planets with an estimated rate of 1.8 per main-sequence star. Moreover, the host star has a nearby stellar (or brown dwarf) companion. The projected separation of the planet is only about three times smaller than that of the companion star, suggesting significant dynamical interactions.

Wednesday, October 29, 2014

Hot Jupiter WASP-12b may Have Sodium in its Atmosphere

Defocussed Transmission Spectroscopy: A potential detection of sodium in the atmosphere of WASP-12b

Authors:

Burton et al

Abstract:

We report on a pilot study of a novel observing technique, defocussed transmission spectroscopy, and its application to the study of exoplanet atmospheres using ground-based platforms. Similar to defocussed photometry, defocussed transmission spectroscopy has an added advantage over normal spectroscopy in that it reduces systematic errors due to flat-fielding, PSF variations, slit-jaw imperfections and other effects associated with ground-based observations. For one of the planetary systems studied, WASP-12b, we report a tentative detection of additional Na absorption of 0.12+/-0.03[+0.03]% during transit using a 2A wavelength mask. After consideration of a systematic that occurs mid-transit, it is likely that the true depth is actually closer to 0.15%. This is a similar level of absorption reported in the atmosphere of HD209458b (0.135+/-0.017%, Snellen et al. 2008). Finally, we outline methods that will improve the technique during future observations, based on our findings from this pilot study.

WASP-87b, WASP-108b, WASP-109b, WASP-110b, WASP-111b & WASP-112b: six new Hot Jupiters Around F/G Host Stars

Six newly-discovered hot Jupiters transiting F/G stars: WASP-87b, WASP-108b, WASP-109b, WASP-110b, WASP-111b & WASP-112b

Authors:

Anderson

Abstract:

We present the discoveries of six transiting hot Jupiters: WASP-87b, WASP-108b, WASP-109b, WASP-110b, WASP-111b and WASP-112b. The planets have masses of 0.51--2.2 MJup and radii of 1.19--1.44 RJup and are in orbits of 1.68--3.78 d around stars with masses 0.81--1.50 M⊙.

WASP-111b is in a prograde, near-aligned (λ=−5±16∘), near-circular (e less than 0.10 at 2 σ) orbit around a mid-F star. As tidal alignment around such a hot star is thought to be inefficient, this suggests that either the planet migrated inwards through the protoplanetary disc or that scattering processes happened to leave it in a near-aligned orbit. WASP-111 appears to have transitioned from an active to a quiescent state between the 2012 and 2013 seasons, which makes the system a candidate for studying the effects of variable activity on a hot-Jupiter atmosphere. We find evidence that the mid-F star WASP-87 is a visual binary with a mid-G star. Two host stars are metal poor: WASP-112 has [Fe/H] = −0.64±0.15 and WASP-87 has [Fe/H] = −0.41±0.10. The low density of WASP-112 (0.81 M⊙, 0.80±0.04 ρ⊙) cannot be matched by standard models for any reasonable value of the age of the star, suggesting it to be affected by the "radius anomaly".


Three Gas Giants Detected: Hot Saturn WASP-69b & Hot Jupiters WASP-70Ab & WASP-84b

Three newly discovered sub-Jupiter-mass planets: WASP-69b and WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary

Authors:


Anderson et al

Abstract:

We report the discovery of the transiting exoplanets WASP-69b, WASP-70Ab and WASP-84b, each of which orbits a bright star (V ∼ 10). WASP-69b is a bloated Saturn-mass planet (0.26 MJup, 1.06 RJup) in a 3.868-d period around an active, ∼1-Gyr, mid-K dwarf. ROSAT detected X-rays 60±27 arcsec from WASP-69. If the star is the source then the planet could be undergoing mass-loss at a rate of ∼1012 g s−1. This is one to two orders of magnitude higher than the evaporation rate estimated for HD 209458b and HD 189733b, both of which have exhibited anomalously large Lyman α absorption during transit. WASP-70Ab is a sub-Jupiter-mass planet (0.59 MJup, 1.16 RJup) in a 3.713-d orbit around the primary of a spatially resolved, 9–10-Gyr, G4+K3 binary, with a separation of 3.3 arcsec (≥800 au). WASP-84b is a sub-Jupiter-mass planet (0.69 MJup, 0.94 RJup) in an 8.523-d orbit around an active, ∼1-Gyr, early-K dwarf. Of the transiting planets discovered from the ground to date, WASP-84b has the third-longest period. For the active stars WASP-69 and WASP-84, we pre-whitened the radial velocities using a low-order harmonic series. We found that this reduced the residual scatter more than did the oft-used method of pre-whitening with a fit between residual radial velocity and bisector span. The system parameters were essentially unaffected by pre-whitening.

Tuesday, October 28, 2014

Thermal Structure of Hot Jupiter WASP-43b's Atmosphere

Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy

Authors:

Stevenson et al

Abstract:

Exoplanets that orbit close to their host stars are much more highly irradiated than their Solar System counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly-irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope. With these data, we construct a map of the planet's atmospheric thermal structure, from which we find large day-night temperature variations at all measured altitudes and a monotonically decreasing temperature with pressure at all longitudes. We also derive a Bond albedo of 0.18 +0.07,-0.12 and an altitude dependence in the hot-spot offset relative to the substellar point.

How Much Water is in Hot Jupiter WASP-43b's Atmosphere?

A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b

Authors:

Kriedberg et al

Abstract:

The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5x solar at 1 σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the Solar System of lower metal enrichment for higher planet masses.

The Atmospheric Circulation of the Hot Jupiter WASP-43b

The Atmospheric Circulation of the Hot Jupiter WASP-43b: Comparing Three-Dimensional Models to Spectrophotometric Data

Authors:

Kataria et al

Abstract:

The hot Jupiter WASP-43b has now joined the ranks of transiting hot Jupiters HD 189733b and HD 209458b as an exoplanet with a large array of observational constraints on its atmospheric properties. Because WASP-43b receives a similar stellar flux as HD 209458b but has a rotation rate 4 times faster and a much higher gravity, studying WASP-43b serves as a test of the effect of rotation rate and gravity on the circulation when stellar irradiation is held approximately constant. Here we present 3D atmospheric circulation models of WASP-43b using the SPARC/MITgcm, a coupled radiation and circulation model, exploring the effects of composition, metallicity, and frictional drag. We find that the circulation regime of WASP-43b is not unlike other hot Jupiters, with equatorial superrotation that yields an eastward-shifted hotspot and large day-night temperature variations (~600 K at photospheric pressures). We then compare our model results to observations from Stevenson et al. which utilize HST/WFC3 to collect spectrophotometric phase curve measurements of WASP-43b from 1.12-1.65 microns. Our results show the 5x solar model lightcurve provides a good match to the data, with a phase offset of peak flux and planet/star flux ratio that is similar to observations; however, the model nightside appears to be brighter. Nevertheless, our 5x solar model provides an excellent match to the WFC3 dayside emission spectrum. This is a major success, as the result is a natural outcome of the 3D dynamics with no model tuning, and differs significantly from 1D models that can generally only match observations when appropriately tuned. In sum, these results demonstrate that 3D circulation models can provide important insights in interpreting exoplanet atmospheric observations, even at high spectral resolution, and highlight the potential for future observations with HST, JWST and other next-generation telescopes.

Monday, October 27, 2014

The effect of Lyman α radiation Mini-Neptune Gliese 436b's Atmosphere

The effect of Lyman α radiation on mini-Neptune atmospheres around M stars: application to GJ 436b

Authors:

Miguel et al

Abstract:

Mini-Neptunes orbiting M stars are a growing population of known exoplanets. Some of them are located very close to their host star, receiving large amounts of UV radiation. Many M stars emit strong chromospheric emission in the H I Lyman α line (Lyα) at 1215.67 \AA, the brightest far-UV emission line. We show that the effect of incoming Lyα flux can significantly change the photochemistry of mini-Neptunes' atmospheres. We use GJ 436b as an example, considering different metallicities for its atmospheric composition. For solar composition, H2O-mixing ratios show the largest change because of Lyα radiation. H2O absorbs most of this radiation, thereby shielding CH4, whose dissociation is driven mainly by radiation at other far-UV wavelengths (∼1300 \AA). H2O photolysis also affects other species in the atmosphere, including H, H2, CO2, CO, OH and O. For an atmosphere with high metallicity, H2O- and CO2-mixing ratios show the biggest change, thereby shielding CH4. Direct measurements of the UV flux of the host stars are important for understanding the photochemistry in exoplanets' atmospheres. This is crucial, especially in the region between 1 and 10−6 bars, which is the part of the atmosphere that generates most of the observable spectral features.

Statistical Distributions of Orbital Resonances in Multi Exoplanet Systems

Statistical distributions of mean motion resonances and near-resonances in multiplanetary systems

Authors:

Ghilea et al

Abstract:

The orbits of the confirmed exoplanets from all multiple systems known to date are investigated. Observational data from 1822 objects, of which 1144 are part of multiplanetary systems, are compiled and analyzed. Mean motion resonances and near-resonances up to the forth order and up to the denominator 4 are tested for all adjacent exoplanet orbits. Each host star's "snow line" is calculated using a simple algorithm. The planets are reclassified into categories as a function of the semimajor axis size relative to the snow line location and the semimajor axis vs mass distribution. The fraction of planets in/near resonance is then plotted as a function of both resonance number and resonance order for all the exoplanet population and, separately, for each planet type. In the resonance number plot it appears that the 2/1 and 3/2 resonances and near-resonances are dominant overall, but the observed distribution changes significantly with each planet category, with terrestrial, neptune-type and mini-neptune planets showing the largest variation. In the order-based resonance/near-resonance plot, the observed distribution appears to follow an exponential decay for the general population, but varies widely again with the planet type, with terrestrial and neptune-type planets displaying the largest differences. Approximate methods to estimate resonance/near resonance distributions are also attempted for the systems with unknown planet mass or with unknown star and/or planet mass and compared with the distribution of the planets with all the parameters known. A separate study of the resonance/near resonance fraction distribution as a function of mass is also attempted, but the low statistical data at very high planetary masses prevent the finding of an accurate equation to describe such a dependency.

Explaining the Maddening HD 82943 Multi-planet System

On the orbital structure of the HD 82943 multi-planet system

Authors:

Raluev et al

Abstract:

HD 82943 hosts a mysterious multi-planet system in the 2:1 mean-motion resonance that puzzles astronomers for more than a decade. We describe our new analysis of all radial velocity data currently available for this star, including both the most recent Keck data and the older but more numerous ELODIE measurements.

Here we pay a major attention to the task of optimal scheduling of the future observation of this system. Applying several optimality criteria, we demonstrate that in the forthcoming observational season of HD 82943 (the winter 2014/2015) rather promising time ranges can be found. Observations of the near future may give rather remarkable improvement of the orbital fit, but only if we choose their time carefully.

Sunday, October 26, 2014

Updates for the PlanetPack Software

PlanetPack software tool for exoplanets detection: coming new features

Authors:

Baluev et al

Abstract:

We briefly overview the new features of PlanetPack2, the forthcoming update of PlanetPack, which is a software tool for exoplanets detection and characterization from Doppler radial velocity data. Among other things, this major update brings parallelized computing, new advanced models of the Doppler noise, handling of the so-called Keplerian periodogram, and routines for transits fitting and transit timing variation analysis.

Potential Exoplanet Detection Rates for Exoplanet Euclid Legacy Survey

ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems

Authors:

McDonald et al

Abstract:

The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides.

We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.

Simulating the Next Gen Exoplanet Detection Instrumentation of the Subaru Telescope

CHARIS Science: Performance Simulations for the Subaru Telescope's Third-Generation of Exoplanet Imaging Instrumentation

Authors:

Brandt et al

Abstract:

We describe the expected scientific capabilities of CHARIS, a high-contrast integral-field spectrograph (IFS) currently under construction for the Subaru telescope. CHARIS is part of a new generation of instruments, enabled by extreme adaptive optics (AO) systems (including SCExAO at Subaru), that promise greatly improved contrasts at small angular separation thanks to their ability to use spectral information to distinguish planets from quasistatic speckles in the stellar point-spread function (PSF). CHARIS is similar in concept to GPI and SPHERE, on Gemini South and the Very Large Telescope, respectively, but will be unique in its ability to simultaneously cover the entire near-infrared J, H, and K bands with a low-resolution mode. This extraordinarily broad wavelength coverage will enable spectral differential imaging down to angular separations of a few λ/D, corresponding to ∼0.″1. SCExAO will also offer contrast approaching 10−5 at similar separations, ∼0.″1--0.″2. The discovery yield of a CHARIS survey will depend on the exoplanet distribution function at around 10 AU. If the distribution of planets discovered by radial velocity surveys extends unchanged to ∼20 AU, observations of ∼200 mostly young, nearby stars targeted by existing high-contrast instruments might find ∼1--3 planets. Carefully optimizing the target sample could improve this yield by a factor of a few, while an upturn in frequency at a few AU could also increase the number of detections. CHARIS, with a higher spectral resolution mode of R∼75, will also be among the best instruments to characterize planets and brown dwarfs like HR 8799 cde and κ And b.

Saturday, October 25, 2014

The Stability of Vortices in Protoplanetary Disks

On the local stability of vortices in differentially rotating discs

Authors:

Railton et al

Abstract:

In order to circumvent the loss of solid material through radial drift towards the central star, the trapping of dust inside persistent vortices in protoplanetary discs has often been suggested as a process that can eventually lead to planetesimal formation. Although a few special cases have been discussed, exhaustive studies of possible quasi-steady configurations available for dust-laden vortices and their stability have yet to be undertaken, thus their viability or otherwise as locations for the gravitational instability to take hold and seed planet formation is unclear. In this paper we generalise and extend the well known Kida solution to obtain a series of steady state solutions with varying vorticity and dust density distributions in their cores, in the limit of perfectly coupled dust and gas. We then present a local stability analysis of these configurations, considering perturbations localised on streamlines. Typical parametric instabilities found have growthrates of 0.05ΩP, where ΩP is the angular velocity at the centre of the vortex. Models with density excess can exhibit many narrow parametric instability bands while those with a concentrated vorticity source display internal shear which significantly affects their stability. However, the existence of these parametric instabilities may not necessarily prevent the possibility of dust accumulation in vortices.

How a Vortex can Shepherd a Planetary Embryo

Planet-vortex interaction: How a vortex can shepherd a planetary embryo

Authors:

Ataiee et al

Abstract:

Context:

Anticyclonic vortices are considered as a favourable places for trapping dust and forming planetary embryos. On the other hand, they are massive blobs that can interact gravitationally with the planets in the disc.
Aims:
We aim to study how a vortex interacts gravitationally with a planet which migrates toward it or a planet which is created inside the vortex.

Methods:

We performed hydrodynamical simulations of a viscous locally isothermal disc using GFARGO and FARGO-ADSG. We set a stationary Gaussian pressure bump in the disc in a way that RWI is triggered. After a large vortex is established, we implanted a low mass planet in the outer disc or inside the vortex and allowed it to migrate. We also examined the effect of vortex strength on the planet migration and checked the validity of the final result in the presence of self-gravity.

Results:

We noticed regardless of the planet's initial position, the planet is finally locked to the vortex or its migration is stopped in a farther orbital distance in case of a stronger vortex. For the model with the weaker vortex, we studied the effect of different parameters such as background viscosity, background surface density, mass of the planet and different planet positions. In these models, while the trapping time and locking angle of the planet vary for different parameters, the main result, which is the planet-vortex locking, remains valid. We discovered that even a planet with a mass less than 5 * 10^{-7} M_{\star} comes out from the vortex and is locked to it at the same orbital distance. For a stronger vortex, both in non-self-gravitated and self-gravitating models, the planet migration is stopped far away from the radial position of the vortex. This effect can make the vortices a suitable place for continual planet formation under the condition that they save their shape during the planetary growth.

HD 50138's Circumstellar Disk

A resolved, au-scale gas disk around the B[e] star HD 50138

Authors:

Ellerbroek et al

Abstract:

HD 50138 is a B[e] star surrounded by a large amount of circumstellar gas and dust. Its spectrum shows characteristics which may indicate either a pre- or a post-main-sequence system. Mapping the kinematics of the gas in the inner few au of the system contributes to a better understanding of its physical nature. We present the first high spatial and spectral resolution interferometric observations of the Br-gamma line of HD~50138, obtained with VLTI/AMBER. The line emission originates from a region more compact (up to 3 au) than the continuum-emitting region. Blue- and red-shifted emission originates from the two different hemispheres of an elongated structure perpendicular to the polarization angle. The velocity of the emitting medium decreases radially. An overall offset along the NW direction between the line- and continuum-emitting regions is observed. We compare the data with a geometric model of a thin Keplerian disk and a spherical halo on top of a Gaussian continuum. Most of the data are well reproduced by this model, except for the variability, the global offset and the visibility at the systemic velocity. The evolutionary state of the system is discussed; most diagnostics are ambiguous and may point either to a post-main-sequence or a pre-main-sequence nature.

Friday, October 24, 2014

The Luminosities of the Coldest Brown Dwarfs

The Luminosities of the Coldest Brown Dwarfs

Authors:

Tinney et al

Abstract:

In recent years brown dwarfs have been extended to a new Y-dwarf class with effective temperatures colder than 500K and masses in the range 5-30 Jupiter masses. They fill a crucial gap in observable atmospheric properties between the much colder gas-giant planets of our own Solar System (at around 130K) and both hotter T-type brown dwarfs and the hotter planets that can be imaged orbiting young nearby stars (both with effective temperatures of in the range 1500-1000K). Distance measurements for these objects deliver absolute magnitudes that make critical tests of our understanding of very cool atmospheres. Here we report new distances for nine Y dwarfs and seven very-late T dwarfs. These reveal that Y dwarfs do indeed represent a continuation of the T dwarf sequence to both fainter luminosities and cooler temperatures. They also show that the coolest objects display a large range in absolute magnitude for a given photometric colour. The latest atmospheric models show good agreement with the majority of these Y dwarf absolute magnitudes. This is also the case for WISE0855-0714 the coldest and closest brown dwarf to the Sun, which shows evidence for water ice clouds. However, there are also some outstanding exceptions, which suggest either binarity or the presence of condensate clouds. The former is readily testable with current adaptive optics facilities. The latter would mean that the range of cloudiness in Y dwarfs is substantial with most hosting almost no clouds -- while others have dense clouds making them prime targets for future variability observations to study cloud dynamics.

Spectroscopy of Hyades L Class Brown Dwarf Candidates

Spectroscopy of Hyades L dwarf candidates

Authors:

Lodieu et al

Abstract:

We present the results of photometric, astrometric, and spectroscopic follow-up of L dwarf candidates identified in the Hyades cluster by Hogan et al. (2008). We obtained low-resolution optical spectroscopy with the OSIRIS spectrograph on the Gran Telescopio de Canarias for all 12 L dwarf candidates as well as new J-band imaging for a subsample of eight to confirm their proper motion. We also present mid-infrared photometry from the Wise Field Infrared Survey Explorer (WISE) for the Hyades L and T dwarf candidates and estimate their spectroscopic distances, effective temperatures, and masses. We confirm the cool nature of several L dwarf candidates and confirm astrometrically their membership, bridging the gap between the coolest M dwarfs and the two T dwarfs previously reported in the Hyades cluster. These members represent valuable spectral templates at an age of 625 Myr and slightly super solar metallicity (Fe/H=+0.13). We update the Hyades mass function across the hydrogen-burning limit and in the substellar regime. We confirm a small number numbers of very-low-mass members below ~0.1 Msun belonging to the Hyades cluster.

Zeta Deplhini A has a Wide Orbit, 50 Jupiter Mass Brown Dwarf: ζ Del B

The VAST Survey - IV. A wide brown dwarf companion to the A3V star ζ Delphini

Authors:

De Rosa et al

Abstract:

We report the discovery of a wide co-moving substellar companion to the nearby (D=67.5±1.1 pc) A3V star ζ Delphini based on imaging and follow-up spectroscopic observations obtained during the course of our Volume-limited A-Star (VAST) multiplicity survey. ζ Del was observed over a five-year baseline with adaptive optics, revealing the presence of a previously-unresolved companion with a proper motion consistent with that of the A-type primary. The age of the ζ Del system was estimated as 525±125 Myr based on the position of the primary on the colour-magnitude and temperature-luminosity diagrams. Using intermediate-resolution near-infrared spectroscopy, the spectrum of ζ Del B is shown to be consistent with a mid-L dwarf (L5±2), at a temperature of 1650±200 K. Combining the measured near-infrared magnitude of ζ Del B with the estimated temperature leads to a model-dependent mass estimate of 50±15 MJup, corresponding to a mass ratio of q=0.019±0.006. At a projected separation of 910±14 au, ζ Del B is among the most widely-separated and extreme-mass ratio substellar companions to a main-sequence star resolved to-date, providing a rare empirical constraint of the formation of low-mass ratio companions at extremely wide separations.

Thursday, October 23, 2014

Using Saline Lakes as Proxies for Extraterrestrial Habitable Environments

SALINE LAKES … A LOGICAL STEP IN EXPLORING HABITABILITY OF “THE FINAL FRONTIER”

Authors:

Nicoll et al

Extract:

Studies of modern biota in Earth's extreme environments provide valuable insights about microbial life as preserved in the rock record since the Archean (e.g., Knoll 1985; Brocks et al. 1999; Xiong et al. 2000; Eigenbrode and Freeman 2006; Kaufmann et al. 2007; Brake and Hasiotis 2008). Paradigms of evolutionary biology on Earth extend to astrobiology, a field that studies the origin, evolution and distribution of extraterrestrial life forms. The goal of space exploration in its pursuit to find life is to “follow the water” (NASA 2008). As such, the presence of “the universal solvent”—water—is key to assessing the habitability of Mars and other planets (e.g., Rothschild 1990; Malin and Edgett 2003; Squyres et al. 2004; Lineweaver et al. 2004; Bullock 2005).

Many recent publications present telescope and space probe data as evidence for the presence of watery biomes in our solar system, and beyond. Life possibly existed in the paleowater body at Endeavour Crater, Mars (Arvidson et al. 2014). Saltwater oceans hypothetically exist below the ice on the Saturn moon Enceladus (e.g., Postberg et al. 2009, 2011). On Europa, the innermost icy satellite of Jupiter, potential biomes include brines made of liquid hypersaline waters in the shallow subsurface crust (Schmidt et al. 2011; Roth et al. 2013). These discoveries invigorate speculation about what microbes might be present in these extreme environments.

Exoplanet Climate at High-obliquity

Climate at high-obliquity

Authors:

Ferreira et al

Abstract:

The question of climate at high obliquity is raised in the context of both exoplanet studies (e.g. habitability) and paleoclimates studies (evidence for low-latitude glaciation during the Neoproterozoic and the “Snowball Earth” hypothesis). States of high obliquity, ϕ , are distinctive in that, for ϕ⩾54°ϕ⩾54°, the poles receive more solar radiation in the annual mean than the equator, opposite to the present day situation. In addition, the seasonal cycle of insolation is extreme, with the poles alternatively “facing” the Sun and sheltering in the dark for months.

The novelty of our approach is to consider the role of a dynamical ocean in controlling the surface climate at high obliquity, which in turn requires understanding of the surface winds patterns when temperature gradients are reversed. To address these questions, a coupled ocean–atmosphere–sea ice GCM configured on an Aquaplanet is employed. Except for the absence of topography and modified obliquity, the set-up is Earth-like. Two large obliquities ϕ, 54° and 90°, are compared to today’s Earth value, ϕ = 23.5°.

Three key results emerge at high obliquity: (1) despite reversed temperature gradients, mid-latitudes surface winds are westerly and trade winds exist at the equator (as for ϕ = 23.5°) although the westerlies are confined to the summer hemisphere, (2) a habitable planet is possible with mid-latitude temperatures in the range 300–280 K and (3) a stable climate state with an ice cap limited to the equatorial region is unlikely.

We clarify the dynamics behind these features (notably by an analysis of the potential vorticity structure and conditions for baroclinic instability of the atmosphere). Interestingly, we find that the absence of a stable partially glaciated state is critically linked to the absence of ocean heat transport during winter, a feature ultimately traced back to the high seasonality of baroclinic instability conditions in the atmosphere.

How Can you Form Close-in SuperEarths and Mini Neptunes?

Formation of close in Super-Earths & Mini-Neptunes: Required Disk Masses & Their Implications

Author:

Schlichting

Abstract:

Recent observations by the {\it Kepler} space telescope have led to the discovery of more than 4000 exoplanet candidates consisting of many systems with Earth- to Neptune-sized objects that reside well inside the orbit of Mercury, around their respective host stars. How and where these close-in planets formed is one of the major unanswered questions in planet formation. Here we calculate the required disk masses for {\it in situ} formation of the {\it Kepler} planets. We find that, if close-in planets formed as {\it isolation masses}, then standard gas-to-dust ratios yield corresponding gas disks that are gravitationally unstable for a significant fraction of systems, ruling out such a scenario. We show that the maximum width of a planet's accretion region in the absence of any migration is 2vesc/Ω, where vesc is the escape velocity of the planet and Ω the Keplerian frequency and use it to calculate the required disk masses for {\it in situ} formation with giant impacts. Even with giant impacts, formation without migration requires disk surface densities in solids at semi-major axes less than 0.1~AU of 103−105 g cm−2 implying typical enhancements above the minimum-mass solar nebular (MMSN) by at least a factor of 20. Corresponding gas disks are below, but not far from, the gravitational stability limit. In contrast, formation beyond a few AU is consistent with MMSN disk masses. This suggests that migration of either solids or fully assembled planets is likely to have played a major role in the formation of close-in super-Earths and mini-Neptunes.

Prebiotic Oxygen in Exoplanet Atmospheres is Possible

About one-fifth of the Earth's atmosphere is oxygen, pumped out by green plants as a result of photosynthesis and used by most living things on the planet to keep our metabolisms running. But before the first photosynthesizing organisms appeared about 2.4 billion years ago, the atmosphere likely contained mostly carbon dioxide, as is the case today on Mars and Venus.

Over the past 40 years, researchers have thought that there must have been a small amount of oxygen in the early atmosphere. Where did this abiotic ("non-life") oxygen come from? Oxygen reacts quite aggressively with other compounds, so it would not persist for long without some continuous source.

Now UC Davis graduate student Zhou Lu, working with professors in the Departments of Chemistry and of Earth and Planetary Sciences, has shown that oxygen can be formed in one step by using a high energy vacuum ultraviolet laser to excite carbon dioxide. (The work is published Oct. 3 in the journal Science).

"Previously, people believed that the abiotic (no green plants involved) source of molecular oxygen is by CO2 + solar light — > CO + O, then O + O + M — > O2 + M (where M represents a third body carrying off the energy released in forming the oxygen bond)," Zhou said in an email. "Our results indicate that O2 can be formed by carbon dioxide dissociation in a one step process. The same process can be applied in other carbon dioxide dominated atmospheres such as Mars and Venus."

Zhou used a vacuum ultraviolet laser to irradiate CO2 in the laboratory. Vacuum ultraviolet light is so-called because it has a wavelength below 200 nanometers and is typically absorbed by air. The experiments were performed by using a unique ion imaging apparatus developed at UC Davis.

Such one-step oxygen formation could be happening now as carbon dioxide increases in the region of the upper atmosphere, where high energy vacuum ultraviolet light from the Sun hits Earth or other planets. It is the first time that such a reaction has been shown in the laboratory. According to one of the scientists who reviewed the paper for Science, Zhou's work means that models of the evolution of planetary atmospheres will now have to be adjusted to take this into account.

Wednesday, October 22, 2014

Looking for Comet-like Exoplanets

Search for a circum-planetary material and orbital period variations of short-period Kepler exoplanet candidates

Authors:

Garai et al

Abstract:

A unique short-period Mercury-size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum-planetary material - comet-like tail. Close-in exoplanets, like KIC012557548b, are subjected to the greatest planet-star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet-like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet-like tails similar to KIC012557548b and for long-term orbital period variations. We are curious about frequency of comet-like tail formation among short-period Kepler exoplanet candidates. We concentrate on a sample of 20 close-in candidates with a period similar to KIC012557548b from the Kepler mission.

Two Families of Exocomets in the β Pictoris System

Two families of exocomets in the β Pictoris system

Authors:

Kiefer et al

Abstract:

The young planetary system surrounding the star β Pictoris harbours active minor bodies . These asteroids and comets produce a large amount of dust and gas through collisions and evaporation, as happened early in the history of our Solar System. Spectroscopic observations of β Pictoris reveal a high rate of transits of small evaporating bodies, that is, exocomets. Here we report an analysis of more than 1,000 archival spectra gathered between 2003 and 2011, which provides a sample of about 6,000 variable absorption signatures arising from exocomets transiting the disk of the parent star. Statistical analysis of the observed properties of these exocomets allows us to identify two populations with different physical properties. One family consists of exocomets producing shallow absorption lines, which can be attributed to old exhausted (that is, strongly depleted in volatiles) comets trapped in a mean motion resonance with a massive planet. Another family consists of exocomets producing deep absorption lines, which may be related to the recent fragmentation of one or a few parent bodies. Our results show that the evaporating bodies observed for decades in the β Pictoris system are analogous to the comets in our own Solar System.

Revisiting the Emission Spectrum of Hot Jupiter HD189733b

Updated Spitzer Emission Spectroscopy of Bright Transiting Hot Jupiter HD189733b

Authors:

Todorov et al

Abstract:

We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD189733b acquired with the now defunct Spitzer/IRS instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results to a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6{\mu}m claimed by Grillmair et al. We compare the planetary emission spectrum to three model families -- based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within relatively narrow wavelength range, between 5.5 and 7{\mu}m. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.

Tuesday, October 21, 2014

How Squashed are the Kepler Planets?

Constraining the Oblateness of Kepler Planets

Authors:

Zhu et al

Abstract:

We use Kepler short cadence light curves to constrain the oblateness of planet candidates in the Kepler sample. The transits of rapidly rotating planets that are deformed in shape will lead to distortions in the ingress and egress of their light curves. We report the first tentative detection of an oblate planet outside of the solar system, measuring an oblateness of 0.22±0.11 for the 18 MJ mass brown dwarf Kepler 39b (KOI-423.01). We also provide constraints on the oblateness of the planets (candidates) HAT-P-7b, KOI-686.01, and KOI-197.01 to be less than 0.067, less than 0.251, and less than 0.186, respectively. Using the Q'-values from Jupiter and Saturn, we expect tidal synchronization for the spins of HAT-P-7b, KOI-686.01 and KOI-197.01, and for their rotational oblateness signatures to be undetectable in the current data. The potentially large oblateness of KOI-423.01 (Kepler 39b) suggests that the Q'-value of the brown dwarf needs to be two orders of magnitude larger than that of the solar system gas giants to avoid being tidally spun-down.

Signatures of Tidal Dissipation of the Core in a Two-layer Planet

The surface signature of the tidal dissipation of the core in a two-layer planet

Authors:

Remus et al

Abstract:

Tidal dissipation, which is directly linked to internal structure, is one of the key physical mechanisms that drive systems evolution and govern their architecture. A robust evaluation of its amplitude is thus needed to predict evolution time for spins and orbits and their final states. The purpose of this paper is to refine recent model of the anelastic tidal dissipation in the central dense region of giant planets, commonly assumed to retain a large amount of heavy elements, which constitute an important source of dissipation. The previous paper evaluated the impact of the presence of the static fluid envelope on the tidal deformation of the core and on the associated anelastic tidal dissipation, through the tidal quality factor Qc. We examine here its impact on the corresponding effective anelastic tidal dissipation, through the effective tidal quality factor Qp. We show that the strength of this mechanism mainly depends on mass concentration. In the case of Jupiter- and Saturn-like planets, it can increase their effective tidal dissipation by, around, a factor 2.4 and 2 respectively. In particular, the range of the rheologies compatible with the observations is enlarged compared to the results issued from previous formulations. We derive here an improved expression of the tidal effective factor Qp in terms of the tidal dissipation factor of the core Qc, without assuming the commonly used assumptions. When applied to giant planets, the formulation obtained here allows a better match between the an elastic core's tidal dissipation of a two-layer model and the observations.

KOI-188b, KOI-195b, KOI-192b, and KOI-830b: 3 New Hot Saturns and a Hot Jupiter

Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

Authors:

Hebrard et al

Abstract:

The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup, respectively. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the whole datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is a false positive.

Monday, October 20, 2014

Evolution of Exoplanets and their Parent Stars

Evolution of Exoplanets and their Parent Stars

Authors:

Guillot et al

Abstract:

Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-type stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets and brown dwarfs in close orbit around G-dwarfs and their presence around F-dwarfs are probably tied to the different properties of dissipation in the stellar interiors. Both the evolution and the composition of stars and planets are intimately linked.

The Orbits of Exoplanets Catalog

The Exoplanet Orbit Database II: Updates to exoplanets.org

Authors:

Han et al

Abstract:

The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) Plotter and Table, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of July 2014. The EOD descends from a table in Butler et al. (2002) and the Catalog of Nearby Exoplanets (Butler et al. 2006), and the first complete documentation for the EOD and the EDE was presented in Wright et al. (2011). In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters, asymmetric uncertainties, and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs), and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma separated value file from the front page of exoplanets.org.

Emission Spectra of Gas Giant HD 209458b

The ground-based H, K, and L-band absolute emission spectra of HD 209458b

Authors:

Zellem et al

Abstract:

Here we explore the capabilities of NASA's 3.0 meter Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 meter Hale telescope with the TripleSpec spectrometer with near-infrared H, K, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L-band indicate bright emission hypothesized to result from non-LTE CH4 ν3 fluorescence. We do not detect a similar bright 3.3 μm feature to ~3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations which overlap the H, K, and L-bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

Sunday, October 19, 2014

How Planetesimals Munch Dust

On the filtering and processing of dust by planetesimals 1. Derivation of collision probabilities for non-drifting planetesimals

Authors:

Guillot et al

Abstract:

Context.

Circumstellar disks are known to contain a significant mass in dust ranging from micron to centimeter size. Meteorites are evidence that individual grains of those sizes were collected and assembled into planetesimals in the young Solar System. Aims. We assess the efficiency of dust collection of a swarm of planetesimals with radii ranging from 1 to 10^3 km and beyond.

Methods.

We derive analytical expressions of the probability for drifting dust to collide with planetesimals.

Results.

For standard turbulence conditions (i.e. a turbulence parameter {\alpha} = 10^-2), filtering is found to be inefficient, meaning that when crossing a minimum-mass solar nebula belt of planetesimals extending between 0.1 and 35 AU most dust particles are eventually accreted by the central star. However, if the disk is weakly turbulent ({\alpha} = 10^-4) filtering becomes efficient in two regimes: (i) For planetesimals smaller than about 10km in size and dust of all sizes and (ii) for planetary embryos larger than about 1000km in size and dust of millimeter-size or larger. The first regime strongly favors short orbital distances while the second only weakly depends on orbital distance. Dust particles much smaller than millimeter-size tend to be only captured by the smallest planetesimals.

Planetesimal Fragmentation and Giant Planet Formation

Planetesimal fragmentation and giant planet formation: the role of planet migration

Authors:

Guilera et al

Abstract:

In the standard model of core accretion, the cores of the giant planets form by the accretion of planetesimals. In this scenario, the evolution of the planetesimal population plays an important role in the formation of massive cores. Recently, we studied the role of planetesimal fragmentation in the in situ formation of a giant planet. However, the exchange of angular momentum between the planet and the gaseous disk causes the migration of the planet in the disk. In this new work, we incorporate the migration of the planet and globally study the role of planet migration in the formation of a massive core when the population of planetesimals evolves by planet accretion, migration due to the nebular drag, and fragmentation due to planetesimal collisions.

How Quickly do Planets Form?

The Mass Budget of Planet Forming Discs: Isolating the Epoch of Planetesimal Formation

Authors:

Najita et al

Abstract:

The high rate of planet detection among solar-type stars argues that planet formation is common. It is also generally assumed that planets form in protoplanetary discs like those observed in nearby star forming regions. On what timescale does the transformation from discs to planets occur? Here we show that current inventories of planets and protoplanetary discs are sensitive enough to place basic constraints on the timescale and efficiency of the planet formation process. A comparison of planet detection statistics and the measured solid reservoirs in T Tauri discs suggests that planet formation is likely already underway at the few Myr age of the discs in Taurus-Auriga, with a large fraction of solids having been converted into large objects with low millimeter opacity and/or sequestered at small disc radii where they are difficult to detect at millimeter wavelengths.

Saturday, October 18, 2014

Warm Carbon Monoxide in Protoplanetary Disks Observed

Signatures of warm carbon monoxide in protoplanetary discs observed with Herschel SPIRE

Authors:

van der Wiel

Abstract:

Molecular gas constitutes the dominant mass component of protoplanetary discs. To date, these sources have not been studied comprehensively at the longest far-infrared and shortest submillimetre wavelengths. This paper presents Herschel SPIRE FTS spectroscopic observations towards 18 protoplanetary discs, covering the entire 450–1540 GHz (666–195 μm) range at ν/Δν ≈ 400–1300. The spectra reveal clear detections of the dust continuum and, in six targets, a significant amount of spectral line emission primarily attributable to 12CO rotational lines. Other targets exhibit little to no detectable spectral lines. Low signal-to-noise detections also include signatures from 13CO, [C i] and HCN. For completeness, we present upper limits of non-detected lines in all targets, including low-energy transitions of H2O and CH+ molecules. The 10 12CO lines that fall within the SPIRE FTS bands trace energy levels of ∼50–500 K. Combined with lower and higher energy lines from the literature, we compare the CO rotational line energy distribution with detailed physical–chemical models, for sources where these are available and published. Our 13CO line detections in the disc around Herbig Be star HD 100546 exceed, by factors of ∼10–30, the values predicted by a model that matches a wealth of other observational constraints, including the SPIRE 12CO ladder. To explain the observed 12CO/13CO ratio, it may be necessary to consider the combined effects of optical depth and isotope selective (photo)chemical processes. Considering the full sample of 18 objects, we find that the strongest line emission is observed in discs around Herbig Ae/Be stars, although not all show line emission. In addition, two of the six T Tauri objects exhibit detectable 12CO lines in the SPIRE range.

Methanol From Envelope to Protoplanetary Disk

Methanol Along the Path from Envelope to Protoplanetary Disc

Authors:

Drozdovskaya et al

Abstract:

Interstellar methanol is considered to be a parent species of larger, more complex organic molecules. A physicochemical simulation of infalling parcels of matter is performed for a low-mass star-forming system to trace the chemical evolution from cloud to disc. An axisymmetric 2D semi-analytic model generates the time-dependent density and velocity distributions, and full continuum radiative transfer is performed to calculate the dust temperature and the UV radiation field at each position as a function of time. A comprehensive gas-grain chemical network is employed to compute the chemical abundances along infall trajectories. Two physical scenarios are studied, one in which the dominant disc growth mechanism is viscous spreading, and another in which continuous infall of matter prevails. The results show that the infall path influences the abundance of methanol entering each type of disc, ranging from complete loss of methanol to an enhancement by a factor of > 1 relative to the prestellar phase. Critical chemical processes and parameters for the methanol chemistry under different physical conditions are identified. The exact abundance and distribution of methanol is important for the budget of complex organic molecules in discs, which will be incorporated into forming planetary system objects such as protoplanets and comets. These simulations show that the comet-forming zone contains less methanol than in the precollapse phase, which is dominantly of prestellar origin, but also with additional layers built up in the envelope during infall. Such intriguing links will soon be tested by upcoming data from the Rosetta mission.

CO/H2 Abundance Ratio of RW Aurigae A's Protoplanetary Disk

CO/H2 Abundance Ratio ~ 10^{-4} in a Protoplanetary Disk

Authors:

France et al

Abstract:

The relative abundances of atomic and molecular species in planet-forming disks around young stars provide important constraints on photochemical disk models and provide a baseline for calculating disk masses from measurements of trace species. A knowledge of absolute abundances, those relative to molecular hydrogen (H2), are challenging because of the weak rovibrational transition ladder of H2 and the inability to spatially resolve different emission components within the circumstellar environment. To address both of these issues, we present new contemporaneous measurements of CO and H2 absorption through the "warm molecular layer" of the protoplanetary disk around the Classical T Tauri Star RW Aurigae A. We use a newly commissioned observing mode of the Hubble Space Telescope-Cosmic Origins Spectrograph to detect warm H2 absorption in this region for the first time. An analysis of the emission and absorption spectrum of RW Aur shows components from the accretion region near the stellar photosphere, the molecular disk, and several outflow components. The warm H2 and CO absorption lines are consistent with a disk origin. We model the 1092-1117A spectrum of RW Aur to derive log10 N(H2)~=~19.90+0.33−0.22 at Trot(H2) ~=~440~+/-~39 K. The CO A~--~X bands observed from 1410-1520A are best fit by log10 N(CO)~=~16.1~+0.3−0.5 at Trot(CO) ~=~200+650−125 K. Combining direct measurements of the HI, H2, and CO column densities, we find a molecular fraction in the warm disk surface of fH2~>=~0.47 and derive a molecular abundance ratio of CO/H2~=~1.6+4.7−1.3~x~10−4, both consistent with canonical interstellar dense cloud values.

Photoevaporation Models in Corona Australis Protoplanetary Disks

Constraints on photoevaporation models from (lack of) radio emission in the Corona Australis protoplanetary disks

Authors:

Galván-Madrid et al

Abstract:

Photoevaporation due to high-energy stellar photons is thought to be one of the main drivers of protoplanetary disk dispersal. The fully or partially ionized disk surface is expected to produce free-free continuum emission at centimeter (cm) wavelengths that can be routinely detected with interferometers such as the upgraded Very Large Array (VLA). We use deep (rms noise down to 8 μJy beam−1 in the field of view center) 3.5 cm maps of the nearby (130 pc) Corona Australis (CrA) star formation (SF) region to constrain disk photoevaporation models. We find that the radio emission from disk sources in CrA is surprisingly faint. Only 3 out of 10 sources within the field of view are detected, with flux densities of order 102 μJy. However, a significant fraction of their emission is non-thermal. Typical upper limits for non-detections are 3σ∼60 μJy beam−1. Assuming analytic expressions for the free-free emission from extreme-UV (EUV) irradiation, we derive stringent upper limits to the ionizing photon luminosity impinging on the disk surface ΦEUV less than 1−4×1041 s−1. These limits constrain ΦEUV to the low end of the values needed by EUV-driven photoevaporation models to clear protoplanetary disks in the observed few Myr timescale. Therefore, at least in CrA, EUV-driven photoevaporation is not likely to be the main agent of disk dispersal. We also compare the observed X-ray luminosities LX of disk sources with models in which photoevaporation is driven by such photons. Although predictions are less specific than for the EUV case, most of the observed fluxes (upper limits) are roughly consistent with the (scaled) predictions. Deeper observations, as well as predictions spanning a wider parameter space, are needed to properly test X-ray driven photoevaporation.

Friday, October 17, 2014

Highlights in the Study of Exoplanet Atmospheres

Highlights in the Study of Exoplanet Atmospheres

Author:

Burrows

Abstract:

Exoplanets are now being discovered in profusion. However, to understand their character requires spectral models and data. These elements of remote sensing can yield temperatures, compositions, and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are achieved. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has oftimes lagged ambition. I summarize the most productive, and at times novel, methods employed to probe exoplanet atmospheres, highlight some of the most interesting results obtained, and suggest various broad theoretical topics in which further work could pay significant dividends.

Using Refraction to Distinguish Between Cloudy, Hazy and Clearsky Exoplanetary Atmospheres

Discriminating Between Cloudy, Hazy and Clearsky Exoplanets Using Refraction

Authors:

Misra et al

Abstract:

We propose a method to distinguish between cloudy, hazy and clearsky (free of clouds and hazes) exoplanet atmospheres that could be applicable to upcoming large aperture space and ground-based telescopes such as the James Webb Space Telescope (JWST) and the European Extremely Large Telescope (E-ELT). These facilities will be powerful tools for characterizing transiting exoplanets, but only after a considerable amount of telescope time is devoted to a single planet. A technique that could provide a relatively rapid means of identifying haze-free targets (which may be more valuable targets for characterization) could potentially increase the science return for these telescopes. Our proposed method utilizes broadband observations of refracted light in the out-of-transit spectrum. Light refracted through an exoplanet atmosphere can lead to an increase of flux prior to ingress and subsequent to egress. Because this light is transmitted at pressures greater than those for typical cloud and haze layers, the detection of refracted light could indicate a cloud- or haze-free atmosphere. A detection of refracted light could be accomplished in less than 10 hours for Jovian exoplanets with JWST and less than hours for Super-Earths/Mini-Neptunes with E-ELT. We find that this technique is most effective for planets with equilibrium temperatures between 200 and 500 K, which may include potentially habitable planets. A detection of refracted light for a potentially habitable planet would strongly suggest the planet was free of a global cloud or haze layer, and therefore a promising candidate for follow-up observations.


Terrestrial Planet Formation in Low-mass Disks is Highly Contingent on Initial Conditions

Terrestrial planet formation in low-mass disks: dependence with initial conditions

Authors:

Ronco et al

Abstract:

In general, most of the studies of terrestrial-type planet formation typically use ad hoc initial conditions. In this work we improved the initial conditions described in Ronco & de El\'ia (2014) starting with a semi-analytical model wich simulates the evolution of the protoplanetary disk during the gas phase. The results of the semi-analytical model are then used as initial conditions for the N-body simulations. We show that the planetary systems considered are not sensitive to the particular initial distribution of embryos and planetesimals and thus, the results are globally similar to those found in the previous work.

Thursday, October 16, 2014

The Atmospheres of Extrasolar Planets and Brown Dwarfs

The Dawes Review 3: The Atmospheres of Extrasolar Planets and Brown Dwarfs

Author:

Bailey

Abstract:

The last few years has seen a dramatic increase in the number of exoplanets known and in the range of methods for characterising their atmospheric properties. At the same time, new discoveries of increasingly cooler brown dwarfs have pushed down their temperature range which now extends down to Y-dwarfs of less than 300 K. Modelling of these atmospheres has required the development of new techniques to deal with the molecular chemistry and clouds in these objects. The atmospheres of brown dwarfs are relatively well understood, but some problems remain, in particular the behavior of clouds at the L/T transition. Observational data for exoplanet atmosphere characterization is largely limited to giant exoplanets that are hot because they are near to their star (hot Jupiters) or because they are young and still cooling. For these planets there is good evidence for the presence of CO and H2O absorptions in the IR. Sodium absorption is observed in a number of objects. Reflected light measurements show that some giant exoplanets are very dark, indicating a cloud free atmosphere. However, there is also good evidence for clouds and haze in some other planets. It is also well established that some highly irradiated planets have inflated radii, though the mechanism for this inflation is not yet clear. Some other issues in the composition and structure of giant exoplanet atmospheres such as the occurence of inverted temperature structures, the presence or absence of CO2 and CH4, and the occurrence of high C/O ratios are still the subject of investigation and debate.

Explaing the Crazy Orbits of the Fomalhaut System

Insights on the dynamical history of the Fomalhaut system - Investigating the Fom c hypothesis

Authors:

Faramaz et al

Abstract:

The eccentric shape of the debris disk observed around Fomalhaut was first attributed to Fom b, a companion detected near the belt inner-edge, but new constraints on its orbit revealed that it is belt-crossing, highly eccentric (e∼0.6−0.9), and can hardly account for the shape of the belt. The best scenario to explain this paradox is that there is another massive body in this system, Fom c, which drives the debris disk shape. The resulting planetary system is highly unstable, which hints at a dynamical scenario involving a recent scattering of Fom b on its current orbit, potentially with the putative Fom c.

Our goal is to give insights on the probability for Fom b to have been set on its highly eccentric orbit by a close-encounter with the putative Fom c. We aim to study in particular the part played by mean-motion resonances with Fom c, which could have brought Fom b sufficiently close to Fom c for it to be scattered on its current orbit, but also delay this scattering event.

Using N-body simulations, we found that the generation of orbits similar to that of Fom b, either in term of dimensions or orientation, is a robust process involving a scattering event and a further secular evolution of inner material with an eccentric massive body such as the putative Fom c. We found in particular that mean-motion resonances can delay scattering events, and thus the production of Fom b-like orbits, on timescales comparable to the age of the system, thus explaining the witnessing of an unstable configuration.

We conclude that Fom b probably originated from an inner resonance with Fom c, which is at least Neptune-Saturn size, and was set on its current orbit by a scattering event with Fom c. Since Fom b could not have formed from material in resonance, our scenario also hints at former migration processes in this planetary system.

HR 8799d is NOT Coplanar With the Rest of HR 8799's Exoplanetary System

Reconnaissance of the HR 8799 Exosolar System II: Astrometry and Orbital Motion

Authors:

Pueyo et al

Abstract:

We present an analysis of the orbital motion of the four sub-stellar objects orbiting HR8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph + Integral Field Spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an Extreme Adaptive Optics system (PALM-3000), a coronagraph and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectro-photometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. While the astrometric history is currently too scarce to formally rule out coplanarity, HR8799d appears to be misaligned with respect to the most likely planes of HR8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR8799de have dynamical masses below 13 M_Jup using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system.

Wednesday, October 15, 2014

Examining the Formation of Exoplanets in Trojan Points


Páez et al

Abstract:

We investigate the dynamics of small trojan exoplanets in domains of secondary resonances within the tadpole domain of motion. We consider the limit of a massless trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of more planets (the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the trojan's dynamics. In the theoretical part of this paper, we develop a Hamiltonian formalism in action-angle variables, which allows to treat in a unified way resonant dynamics and secular effects on the trojan body in both the ERTBP or the RMPP. Our formalism leads to a decomposition of the Hamiltonian in two parts, H=Hb+Hsec. Hb, called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom. Hsec contains only terms depending on slow (secular) angles. Hb is formally identical in the ERTBP and the RMPP, apart from a re-definition of angular variables. An important physical consequence is that the slow chaotic diffusion proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism better approximated by the paradigm of `modulational diffusion'. In the numerical part, we focus on the ERTBP for making a numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we provide a survey of the resonant web for characteristic mass parameters of the primary, in which the secondary resonances from 1:5 to 1:12 (ratio of the short over the synodic period) and their resonant multiplets appear. We give numerical examples of diffusion of weakly chaotic orbits in the resonant web. We make a statistics of the escaping times in the resonant domain, and find power-law tails of the distribution of escaping times for slowly diffusing chaotic orbits.

Modeling the Trojan Points in Exoplanetary Systems

Modeling resonant trojan motion in planetary systems

Authors:

Efthymiopoulos et al

Abstract:

We consider the dynamics of a small trojan companion of a hypothetical giant exoplanet under the secular perturbations of additional planets. By a suitable choice of action-angle variables, the problem is amenable to the study of the slow modulation, induced by secular perturbations, to the dynamics of an otherwise called `basic' Hamiltonian model of two degrees of freedom (planar case). We present this Hamiltonian decomposition, which implies that the slow chaotic diffusion at resonances is best described by the paradigm of modulational diffusion.

Stable Co-orbital Islands

Spin-orbit resonances and rotation of coorbital bodies in quasi-circular orbits

Authors:

Robutel et al

Abstract:

The rotation of asymmetric bodies in eccentric Keplerian orbits can be chaotic when there is some overlap of spin-orbit resonances. Here we show that the rotation of two coorbital bodies (two planets orbiting a star or two satellites of a planet) can also be chaotic even for quasi-circular orbits around the central body. When dissipation is present, the rotation period of a body on a nearly circular orbit is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We further show that the rotation becomes chaotic when the natural rotational libration frequency, due to the axial asymmetry, is of the same order of magnitude as the orbital libration frequency.

Tuesday, October 14, 2014

Hot Jupiter Kepler-424b now has a Companion Exoplanet

Kepler-424 b: A "Lonely" Hot Jupiter That Found A Companion

Authors:

Endl et al

Abstract:

Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31-d orbit accompanied by a more massive outer companion in an eccentric (e=0.3) 223-d orbit. The outer giant planet, Kepler-424c, is not detected to transit the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets, the appear to be "lonely" (e.g. Steffen et al.~2012). This might be a consequence of a highly dynamical past of these systems. The Kepler-424 planetary system is a system with a hot Jupiter in a multiple system, similar to upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127; Gandolfi et al.~2013), Kepler-43 (KOI-135; Bonomo et al.~2012), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope and HET. For all systems we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have a heavy elements content between 20 and 120 M_Earth.

KOI-183b: a hot Jupiter Around an 11 Billion Year old Star

KOI-183b: a half-Jupiter mass planet transiting a very old solar-like star

Authors:

Gandolfi et al

Abstract:

We report the spectroscopic confirmation of the Kepler object of interest KOI-183b (also known as KOI-183.01), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with M⋆=0.85±0.04 MSun, R⋆=0.95±0.04 RSun, Teff=5560±80 K, [M/H]=−0.10±0.05 dex, and with an age of 11±2 Gyr. The planet KOI-183b has a mass of Mp=0.595±0.081 MJup and a radius of Rp=1.192±0.052 RJup, yielding a planetary bulk density of ρp=0.459±0.083 g/cm3. The radius of KOI-183b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2-σ confidence level (ΔFec=14.2±6.6 ppm) and found that the orbit might have a small non-zero eccentricity of e=0.019+0.028−0.014. With a Bond albedo of AB=0.037±0.019, KOI-183b is one of the gas-giant planets with the lowest albedo known so far.

WASP-94Ab and WASP-94Bb: Hot Jupiters in a Binary Star System

WASP-94 A and B planets: hot-Jupiter cousins in a twin-star system

Authors:

Neveu-VanMalle et al

Abstract:

We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. WASP-94A (2MASS 20550794-3408079) is an F8 type star hosting a transiting planet with a radius of 1.72 +/- 0.06 R_Jup, a mass of 0.445 +/- 0.026 M_Jup, and an orbital period of 3.95 days. The Rossiter-McLaughlin effect is clearly detected, and the measured projected spin-orbit angle indicates that the planet occupies a retrograde orbit. WASP-94B (2MASS 20550915-3408078) is an F9 stellar companion at an angular separation of 15" (projected separation 2700 au), hosting a gas giant with a minimum mass of 0.617 +/- 0.028 M_Jup with a period of 2.008 days, detected by Doppler measurements. The orbital planes of the two planets are inclined relative to each other, indicating that at least one of them is inclined relative to the plane of the stellar binary. These hot Jupiters in a binary system bring new insights into the formation of close-in giant planets and the role of stellar multiplicity.

Transmission Spectral Properties of Clouds for Hot Jupiter

Transmission spectral properties of clouds for hot Jupiter exoplanets

Authors:

Wakeford et al

Abstract:

Clouds have an important role in the atmospheres of planetary bodies. It is expected that, like all the planetary bodies in our solar system, exoplanet atmospheres will also have substantial cloud coverage, and evidence is mounting for clouds in a number of hot Jupiters. In order to better characterise planetary atmospheres we need to consider the effects these clouds will have on the observed broadband transmission spectra. Here we examine the expected cloud condensate species for hot Jupiter exoplanets and the effects of various grain sizes and distributions on the resultant transmission spectra from the optical to infrared, which can be used as a broad framework when interpreting exoplanet spectra. We note that significant infrared absorption features appear in the computed transmission spectrum, the result of vibrational modes between the key species in each condensate, which can potentially be very constraining. While it may be hard to differentiate between individual condensates in the broad transmission spectra, it may be possible to discern different vibrational bonds, which can distinguish between cloud formation scenarios such as condensate clouds or photochemically generated species. Vibrational mode features are shown to be prominent when the clouds are composed of small sub-micron sized particles and can be associated with an accompanying optical scattering slope. These infrared features have potential implications for future exoplanetary atmosphere studies conducted with JWST, where such vibrational modes distinguishing condensate species can be probed at longer wavelengths.

Monday, October 13, 2014

Electrodynamics of Close-in Extrasolar Giant Planets (ie Hot Jupiters, etc)

Electrodynamics on extrasolar giant planets

Authors:

Koskinen et al

Abstract:

Strong ionization on close-in extrasolar giant planets suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive MHD that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments

Magnetically Controlled Outflows From hot Jupiter Atmospheres

Magnetically Controlled Outflows from Planets

Authors:

Adams et al

Abstract:

Hot Jupiters can experience mass loss driven by heating from UV radiation from their host stars, and this flow is often controlled by magnetic fields. More specifically, near the planetry surface, the magnetic pressure dominates the ram pressure of the outflow by several orders of magnitude. After leaving the vicinity of the planet, the flow must connect onto the background environment provided by the stellar wind and the stellar magnetic field. This contribution considers magnetically controlled planetary outflows and extends previous work by comparing two different geometries for the background magnetic field provided by the star. In the first case, stellar field is assumed to retain the form of a dipole, which is anti-aligned with the dipole field of the planet. In the second case, the stellar outflow opens up the stellar magnetic field structure so that the background field at the location of the planet is perpendicular to the planetary dipole. Using numerical simulations, we consider the launch of the planetary wind with these field configurations.

Evidence From hot Jupiter WASP-84b Migration due to Protoplanetary Disk/Exoplanetary Interaction

The well-aligned orbit of WASP-84b: evidence for disc migration

Authors:

Anderson et al

Abstract:

We report the sky-projected orbital obliquity (spin-orbit angle) of WASP-84b, a 0.70-MJup planet in a 8.52-day orbit around a G9V/K0V star, to be λ=0.3±1.7∘. We obtain a true obliquity of ψ=14.8±8.0∘ from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularised from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disc. This would make it the first short-orbit, giant planet to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff less than 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

Sunday, October 12, 2014

Improving on Radial Velocity Detection Techniques

Keplerian periodogram for Doppler exoplanets detection: optimized computation and analytic significance thresholds

Authors:

Baluev et al

Abstract:

We consider the so-called Keplerian periodogram, in which the putative detectable signal is modelled by a highly non-linear Keplerian radial velocity function, appearing in Doppler exoplanetary surveys. We demonstrate that for planets on high-eccentricity orbits the Keplerian periodogram is far more efficient than the classic Lomb-Scargle periodogram and even the multiharmonic periodograms, in which the periodic signal is approximated by a truncated Fourier series.

We provide new numerical algorithm for computation of the Keplerian periodogram. This algorithm adaptively increases the parameteric resolution where necessary, in order to uniformly cover all local optima of the Keplerian fit. Thanks to this improvement, the algorithm provides more smooth and reliable results with minimized computing demands.

We also derive a fast analytic approximation to the false alarm probability levels of the Keplerian periodogram. This approximation has the form (Pz3/2+Qz)Wexp(−z), where z is the observed periodogram maximum, W is proportional to the settled frequency range, and the coefficients P and Q depend on the maximum eccentricity to scan.