Sunday, September 21, 2014

Hall-effect Controlled Gas Dynamics in Outer Protoplanetary Disks

Hall-effect Controlled Gas Dynamics in Protoplanetary Disks: II. Full 3D Simulations toward the Outer Disk

Authors:

Bai et al

Abstract:

We perform 3D stratified shearing-box MHD simulations on the gas dynamics of protoplanetary disks threaded by net vertical magnetic field Bz. All three non-ideal MHD effects, Ohmic resistivity, the Hall effect and ambipolar diffusion are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5-60AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that around R=5AU, the system launches a laminar/weakly turbulent magnetocentrifugal wind when the net vertical field Bz is not too weak, as expected. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at disk midplane. The case with anti-aligned field polarity (Omega. Bz less than 0) is more susceptible to the MRI when Bz drops, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R=30AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15AU. This is a generic phenomenon unrelated to the Hall effect, and leads to enhanced zonal flow. Observational and theoretical implications, as well as future prospects are briefly discussed.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.