Tuesday, October 11, 2016

Is TW Hydrae About to Lose its Disk?

The dusty disk surrounding the star TW Hydrae exhibits circular features that may signal the formation of protoplanets. LMU astrophysicist Barbara Ercolano argues, however, that the innermost actually points to the impending dispersal of the disk.

When the maps appeared at the end of March, experts were electrified. The images revealed an orange-red disk pitted with circular gaps that looked like the grooves in an old-fashioned long-playing record. But this was no throwback to the psychedelic Sixties. It was a detailed portrait of a so-called protoplanetary disk, made up of gas and dust grains, associated with a young star - the kind of structure out of which planets could be expected to form. Not only that, the maps showed that the disk around the star known as TW Hydrae exhibits several clearly defined gaps. Astronomers speculated that these gaps might indicate the presence of protoplanets, which had pushed away the material along their orbital paths. And to make the story even more seductive, one prominent gap is located at approximately the same distance from TW Hydrae as Earth is from the Sun - raising the possibility that this putative exoplanet could be an Earth-like one.

Now an international team led by Professor Barbara Ercolano at LMU's Astronomical Observatory has compared the new observations with theoretical models of planet formation. The study indicates that the prominent gap in the TW Hydrae system is unlikely to be due to the action of an actively accreting protoplanet. Instead, the team attributes the feature to a process known as photoevaporation. Photoevaporation occurs when the intense radiation emitted by the parent star heats the gas, allowing it to fly away from the disk. But although hopes of a new exo-Earth orbiting in the inner gap of TW Hydrae may themselves have evaporated, the system nevertheless provides the opportunity to observe the dissipation of a circumstellar disk in unprecedented detail. The new findings appear in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.