Tuesday, December 27, 2016

Nemesis Class Exoplanets are Truly bad News




The potential existence of a distant planet ("Planet Nine") in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently-distant and sufficiently-massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass loss and Galactic tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.