Sunday, January 1, 2017

Mass measurements in protoplanetary disks from hydrogen deuteride


McClure et al


The total gas mass of a protoplanetary disk is a fundamental, but poorly determined, quantity. A new technique \citep{bergin+13} has been demonstrated to assess directly the bulk molecular gas reservoir of molecular hydrogen using the HD J=1-0 line at 112 μm. In this work we present a {\it Herschel} Space Observatory\footnote{Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.} survey of six additional T Tauri disks in the HD line. Line emission is detected at >3σ significance in two cases: DM Tau and GM Aur. For the other four disks, we establish upper limits to the line flux. Using detailed disk structure and ray tracing models, we calculate the temperature structure and dust mass from modeling the observed spectral energy distributions, and include the effect of UV gas heating to determine the amount of gas required to fit the HD line. The range of gas masses are 1.0-4.7×10−2 for DM Tau and 2.5-20.4×10−2 for GM Aur. These values are larger than those found using CO for GM Aur, while the CO-derived gas mass for DM Tau is consistent with the lower end of our mass range. This suggests a CO chemical depletion from the gas phase of up to a factor of five for DM Tau and up to two orders of magnitude for GM Aur. We discuss how future analysis can narrow the mass ranges further.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.