Saturday, September 9, 2017

N-body simulations of planet formation via pebble accretion I: First Results

N-body simulations of planet formation via pebble accretion I: First Results


Matsumura et al

Context. Planet formation with pebbles has been proposed to solve a couple of long-standing issues in the classical formation model. Some sophisticated simulations have been done to confirm the efficiency of pebble accretion. However, there has not been any global N-body simulations that compare the outcomes of planet formation via pebble accretion with observed extrasolar planetary systems. Aims. In this paper, we study the effects of a range of initial parameters of planet formation via pebble accretion, and present the first results of our simulations. Methods. We incorporate the pebble accretion model by Ida et al. (2016) in the N-body code SyMBA, along with the effects of gas accretion, eccentricity and inclination damping and planet migration in the disc. Results. We confirm that pebble accretion leads to a variety of planetary systems, but have difficulty in reproducing observed properties of exoplanetary systems, such as planetary mass, semimajor axis, and eccentricity distributions. The main reason behind this is a too-efficient type I migration, which sensitively depends on a disc model. However, our simulations also lead to a few interesting predictions. First, we find that formation efficiencies of planets depend on the stellar metallicities, not only for giant planets, but also for Earths (Es) and Super-Earths (SEs). The dependency for Es/SEs is subtle because, although higher metallicity environments lead to faster formation of a larger number of Es/SEs, they also tend to be lost later via dynamical instability. Second, our results indicate that a range of densities observed for Es and SEs is a natural consequence of dynamical evolution of planetary systems. Third, the ejection trend of our simulations suggest that one free-floating E/SE may be expected for two smaller-mass planets.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.