Dust trapping by spiral arms in gravitationally unstable protostellar discs
Authors:
Dipierro et al
Abstract:
In this paper we discuss the influence of gravitational instabilities in massive protostellar discs on the dynamics of dust grains. Starting from a Smoothed Particle Hydrodynamics (SPH) simulation, we have computed the evolution of the dust in a quasi-static gas density structure typical of self-gravitating disc. For different grain size distributions we have investigated the capability of spiral arms to trap particles. We have run 3D radiative transfer simulations in order to construct maps of the expected emission at (sub-)millimetre and near-infrared wavelengths. Finally, we have simulated realistic observations of our disc models at (sub-)millimetre and near-infrared wavelengths as they may appear with the Atacama Large Millimetre/sub-millimetre Array (ALMA) and the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) in order to investigate whether there are observational signatures of the spiral structure. We find that the pressure inhomogeites induced by gravitational instabilities produce a non-negligible dynamical effect on centimetre sized particles leading to significant overdensities in spiral arms. We also find that the spiral structure is readily detectable by ALMA over a wide range of (sub-)millimetre wavelengths and by HiCIAO in near-infrared scattered light for non-face-on discs located in the Ophiucus star-forming region. In addition, we find clear spatial spectral index variations across the disc, revealing that the dust trapping produces a migration of large grains that can be potentially investigated through multi-wavelenghts observations in the (sub-)millimetric. Therefore, the spiral arms observed to date in protoplanetary disc might be interpreted as density waves induced by the development of gravitational instabilities.
Saturday, May 23, 2015
Dust Trapped in Protostellar Disk Spiral Arms due to Gravitational Instability
Labels:
dust,
stellar formation
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.