Methane Planets and their Mass-Radius Relation
Authors:
Helled et al
Abstract:
Knowledge of both the mass and radius of an exoplanet allows us to estimate its mean density, and therefore, its composition. Exoplanets seem to fill a very large parameter space in terms of mass and composition, and unlike the solar-system's planets, exoplanets also have intermediate masses (~5-50 M_Earth) with various densities. In this letter, we investigate the behavior of the Mass-Radius relation for methane (CH_4) planets and show that when methane planets are massive enough (M_planet greater than ~15 M_Earth) the methane can dissociate and lead to a differentiated planet with a carbon core, a methane envelope, and a hydrogen atmosphere. The contribution of a rocky core to the behavior of CH_4 planet is considered as well. We also develop interior models for several detected intermediate-mass planets that could, in principle, be methane/methane-rich planets. The example of methane planets emphasizes the complexity of the Mass-Radius relation and the challenge in inferring the planetary composition uniquely.
Wednesday, May 20, 2015
Modeling Methane Exoplanets
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.