DIVERSITY OF EXTRASOLAR PLANETS AND DIVERSITY OF MOLECULAR CLOUD CORES. I. SEMIMAJOR AXES
Authors:
Jin et al
Abstract:
We show that the diversity of extrasolar planetary systems may be related to the diversity of molecular cloud cores. In previous studies of planet formation, artificial initial conditions of protoplanetary disks or steady state disks, such as the minimum mass nebula model, have often been used so that the influence of cloud core properties on planet formation is not realized. To specifically and quantitatively demonstrate our point, we calculate the dependence of disk properties on cloud core properties and show that the boundary of the giant planet formation region in a disk is a function of cloud core properties with the conventional core accretion model of giant planet formation. The gravitational stability of a disk depends on the properties of its progenitor cloud core. We also compare our calculations with observations of extrasolar planets. From the observational data of cloud cores, our model could infer the range and most frequent values of observed semimajor axes of extrasolar planets. Our calculations suggest that planet formation at the snowline alone could not completely explain the semimajor axis distribution. If the current observations are not biased, our calculations indicate that the planet formation at the snowline is inefficient. We suggest that there will be more observed planets with semimajor axis less than 9 AU than greater than 9 AU, even with a longer duration of observations, if the planet formation at the snowline is inefficient.
Thursday, February 13, 2014
Predictions for Exoplanet Locations if Planetary Formation at or Beyond the Snowline is Inefficient
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.