Friday, February 28, 2014

HATS-4b: A Newly Discovered Dense Hot-Jupiter

HATS-4b: A Dense Hot-Jupiter Transiting a Super Metal-Rich G Star


Jordán et al


We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V=13.46 mag G star. HATS-4b has a period of P = 2.5167 d, mass of Mp = 1.32 Mj, radius of Rp = 1.02 Rj and density of rho_p = 1.55 +- 0.16 g/cm^3 ~ 1.24 rhoj. The host star has a mass of 1.00 Msun, a radius of 0.92 Rsun and a very high metallicity [Fe/H]= 0.43 +- 0.08. HATS-4b is among the densest known planets with masses between 1-2 Mj and is thus likely to have a significant content of heavy elements of the order of 75 Mearth. In this paper we present the data reduction, radial velocity measurement and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique to estimate simultaneously vsini and macroturbulence using high resolution spectra.

WTS-2b: a new hot Jupiter Predicted to be Destroyed in ~40 Million Years

WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K-dwarf


Birby et al


We report the discovery of WTS-2 b, an unusually close-in 1.02-day hot Jupiter (Mp=1.12MJ, Rp=1.363RJ) orbiting a K2V star, which has a possible gravitationally-bound M-dwarf companion at 0.6 arcsec separation contributing ~20 percent of the total flux in the observed J-band light curve. The planet is only 1.5 times the separation from its host star at which it would be destroyed by Roche lobe overflow, and has a predicted remaining lifetime of just ~40 Myr, assuming a tidal dissipation quality factor of Q'*=10^6. Q'* is a key factor in determining how frictional processes within a host star affect the orbital evolution of its companion giant planets, but it is currently poorly constrained by observations. We calculate that the orbital decay of WTS-2 b would correspond to a shift in its transit arrival time of T_shift~17 seconds after 15 years assuming Q'*=10^6. A shift less than this would place a direct observational constraint on the lower limit of Q'* in this system. We also report a correction to the previously published expected T_shift for WASP-18 b, finding that T_shift=356 seconds after 10 years for Q'*=10^6, which is much larger than the estimated 28 seconds quoted in WASP-18 b discovery paper. We attempted to constrain Q'* via a study of the entire population of known transiting hot Jupiters, but our results were inconclusive, requiring a more detailed treatment of transit survey sensitivities at long periods. We conclude that the most informative and straight-forward constraints on Q'* will be obtained by direct observational measurements of the shift in transit arrival times in individual hot Jupiter systems. We show that this is achievable across the mass spectrum of exoplanet host stars within a decade, and will directly probe the effects of stellar interior structure on tidal dissipation.

Thursday, February 27, 2014

Kepler's Hundreds of New Planets Paper

Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems


Rowe et al


The Kepler mission has discovered over 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of them in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false-positives indicates that the multiplanet systems contain very few false-positive signals due to other systems not gravitationally bound to the target star (Lissauer, J. J., et al., 2012, ApJ 750, 131). False positives in the multi- planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false-positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~2 unidentified false-positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves and ground-based spectroscopy and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. None the less, our result nearly doubles the number of verified exoplanets.

Most Kepler Candidate Systems With Multiple Planets are Real Multiple Planet Systems

Validation of Kepler's Multiple Planet Candidates. II: Refined Statistical Framework and Descriptions of Systems of Special Interest


Lissauer et al


We extend the statistical analysis of Lissauer et al. (2012, ApJ 750, 112), which demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) represent true transiting planets, and develop therefrom a procedure to validate large numbers of planet candidates in multis as bona fide exoplanets. We show that this statistical framework correctly estimates the abundance of false positives already identified around Kepler targets with multiple sets of transit-like signatures based on their abundance around targets with single sets of transit-like signatures. We estimate the number of multis that represent split systems of one or more planets orbiting each component of a binary star system. We use the high reliability rate for multis to validate more than one dozen particularly interesting multi-planet systems are validated in a companion paper by Rowe et al. (2014, ApJ, this issue). We note that few very short period (P < 1.6 days) planets orbit within multiple transiting planet systems and discuss possible reasons for their absence. There also appears to be a shortage of planets with periods exceeding a few months in multis.

Kepler Team Verifies 715 More Exoplanet Candidates

NASA's Kepler mission announced Wednesday the discovery of 715 new planets. These newly-verified worlds orbit 305 stars, revealing multiple-planet systems much like our own solar system.

Nearly 95 percent of these planets are smaller than Neptune, which is almost four times the size of Earth. This discovery marks a significant increase in the number of known small-sized planets more akin to Earth than previously identified exoplanets, which are planets outside our solar system.

"The Kepler team continues to amaze and excite us with their planet hunting results," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "That these new planets and solar systems look somewhat like our own, portends a great future when we have the James Webb Space Telescope in space to characterize the new worlds.”

Since the discovery of the first planets outside our solar system roughly two decades ago, verification has been a laborious planet-by-planet process. Now, scientists have a statistical technique that can be applied to many planets at once when they are found in systems that harbor more than one planet around the same star.

To verify this bounty of planets, a research team co-led by Jack Lissauer, planetary scientist at NASA's Ames Research Center in Moffett Field, Calif., analyzed stars with more than one potential planet, all of which were detected in the first two years of Kepler's observations -- May 2009 to March 2011.

The research team used a technique called verification by multiplicity, which relies in part on the logic of probability. Kepler observes 150,000 stars, and has found a few thousand of those to have planet candidates. If the candidates were randomly distributed among Kepler's stars, only a handful would have more than one planet candidate. However, Kepler observed hundreds of stars that have multiple planet candidates. Through a careful study of this sample, these 715 new planets were verified.

Wednesday, February 26, 2014

A WISE Survey of Disks Around Stars in Constellation Taurus


Esplin et al


We have compiled photometry at 3.4, 4.6, 12 and 22 μm from the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) for all known members of the Taurus complex of dark clouds. Using these data and photometry from the Spitzer Space Telescope, we have identified members with infrared excess emission from circumstellar disks and have estimated the evolutionary stages of the detected disks, which include 31 new full disks and 16 new candidate transitional, evolved, evolved transitional, and debris disks. We have also used the WISE All-Sky Source Catalog to search for new disk-bearing members of Taurus based on their red infrared colors. Through optical and near-infrared spectroscopy, we have confirmed 26 new members with spectral types of M1 - M7. The census of disk-bearing stars in Taurus should now be largely complete for spectral types earlier than ∼M8 (M≳0.03 M⊙).

Is it Possible to Detect Exoplanets Around Young G or K Stars Like HD 141943 and AB Dor

Is it possible to detect planets around young active G and K dwarfs?


Jeffers et al


Theoretical predictions suggest that the distribution of planets in very young stars could be very different to that typically observed in Gyr old systems that are the current focus of radial velocity surveys. However, the detection of planets around young stars is hampered by the increased stellar activity associated with young stars, the signatures of which can bias the detection of planets. In this paper, we place realistic limitations on the possibilities for detecting planets around young active G and K dwarfs. The models of stellar activity based on tomographic imaging of the G dwarf HD 141943 and the K1 dwarf AB Dor also include contributions from plage and many small random starspots. Our results show that the increased stellar activity levels present on young solar-type stars strongly impacts the detection of Earth-mass and Jupiter-mass planets and that the degree of activity jitter is directly correlated with stellar v sin i. We also show that for G and K dwarfs, the distribution of activity in individual stars is more important than the differences in induced radial velocities as a function of spectral type. We conclude that Jupiter-mass planets can be detected close-in around fast-rotating young active stars, Neptune-mass planets around moderate rotators and that Super-Earths are only detectable around very slowly rotating stars. The effects of an increase in stellar activity jitter by observing younger stars can be compensated for by extending the observational base-line to at least 100 epochs.

Tuesday, February 25, 2014

HD 154857c & HD 114613b: Two New Jupiter Analogs



Wittenmeyer et al


We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P = 10.5 yr, and a minimum mass msin i of 0.48 M Jup; HD 154857c has P = 9.5 yr and msin i = 2.6 M Jup. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 108 yr. These results highlight the continued importance of "legacy" surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own solar system.

What is the Fomalhaut System's Configuration?

Consequences of an eccentric orbit for Fomalhaut b




Fomalhaut b is currently the least massive, directly imaged exoplanet candidate. New observation epochs have revealed this object to be moving on a highly eccentric orbit, which sets important new constraints. I consider scenarios where Fomalhaut b is the only object interacting with the debris disc, and ones involving an additional unseen planet. I also investigate the possibility that Fomalhaut b is merely a transient dust cloud in light of the revised eccentric orbit. I argue that the scenario best able to match the observational constraints is a super-Earth Fomalhaut b surrounded by a vast cloud of dust that is generated by a population of irregular satellites, with an undetected ∼Saturn-mass planet orbiting interior to the disc and driving the secular dynamics. Testable predictions are summarized that could differentiate between this scenario and other possibilities.

Monday, February 24, 2014

Is Photosynthesis Possible on a World in a 3:2 Spin Orbit Resonance?

Photosynthetic Potential of Planets in 3:2 Spin Orbit Resonances


Brown et al


Photosynthetic life requires sufficient photosynthetically active radiation (PAR) to metabolise. On Earth, plant behaviour, physiology and metabolism are sculpted around the night-day cycle by an endogenous biological circadian clock.

The evolution of life was influenced by the Earth-Sun orbital dynamic, which generates the photo-environment incident on the planetary surface. In this work the unusual photo-environment of an Earth-like planet (ELP) in 3:2 spin orbit resonance is explored. Photo-environments on the ELP are longitudinally differentiated, in addition to differentiations relating to latitude and depth (for aquatic organisms) which are familiar on Earth. The light environment on such a planet could be compatible with Earth's photosynthetic life although the threat of atmospheric freeze-out and prolonged periods of darkness would present significant challenges. We emphasise the relationship between the evolution of life on a planetary body with its orbital dynamics.

Planetary Formation Influences on Mini Neptunes and Super Earths

Mass-Radius Relations and Core-Envelope Decompositions of Super-Earths and Sub-Neptunes


Howe et al


Many exoplanets have been discovered with radii of 1-4 Earth radii, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are "sub-Neptunes" likely to have significant hydrogen-helium envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, hydrogen-helium envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both "Earth-like" rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

Sunday, February 23, 2014

ESA Selects PLATO Exoplanet Telescope for 2024

A telescope to find rocky worlds around other stars has been selected for launch by the European Space Agency's (ESA) Science Policy Committee.

Known as Plato, the mission should launch on a Soyuz rocket in 2024.

The observatory concept was chosen following several years of assessment in competition with other ideas.

It is expected to cost ESA just over 600 million euros, although hardware contributions from member states will take this closer to a billion (£800m [$822 Million -me]).

Astronomers have so far found over 1,000 planets beyond our Solar System, but none as yet has been shown to be truly Earth-like in terms of its size and distance from a Sun similar to our own.

The PLAnetary Transits and Oscillations of stars mission will look to change that.

Kepler's Universe

Saturday, February 22, 2014

HD 166191's Protoplanetary Disk

Evolution from protoplanetary to debris discs: the transition disc around HD 166191


Kennedy et al


HD 166191 has been identified by several studies as hosting a rare and extremely bright warm debris disc with an additional outer cool disc component. However, an alternative interpretation is that the star hosts a disc that is currently in transition between a full gas disc and a largely gas-free debris disc. With the help of new optical to mid-infrared (IR) spectra and Herschel imaging, we argue that the latter interpretation is supported in several ways: (i) we show that HD 166191 is comoving with the ∼4-Myr-old Herbig Ae star HD 163296, suggesting that the two have the same age; (ii) the disc spectrum of HD 166191 is well matched by a standard radiative transfer model of a gaseous protoplanetary disc with an inner hole and (iii) the HD 166191 mid-IR silicate feature is more consistent with similarly primordial objects. We note some potential issues with the debris disc interpretation that should be considered for such extreme objects, whose lifetime at the current brightness is much shorter than the stellar age, or in the case of the outer component requires a mass comparable to the solid component of the solar nebula. These aspects individually and collectively argue that HD 166191 is a 4–5 Myr old star that hosts a gaseous transition disc. Though it does not argue in favour of either scenario, we find strong evidence for 3–5 μm disc variability. We place HD 166191 in context with discs at different evolutionary stages, showing that it is a potentially important object for understanding the protoplanetary to debris disc transition.

The Carbon Monoxide Snowline in Protoplanetary Disks

On the evolution of the CO snow line in protoplanetary disks


Martin et al


CO is thought to be a vital building block for prebiotic molecules that are necessary for life. Thus, understanding where CO existed in a solid phase within the solar nebula is important for understanding the origin of life. We model the evolution of the CO snow line in a protoplanetary disk. We find that the current observed location of the CO snow line in our solar system, and in the solar system analogue TW Hydra, cannot be explained by a fully turbulent disk model. With time-dependent disk models we find that the inclusion of a dead zone (a region of low turbulence) can resolve this problem. Furthermore, we obtain a fully analytic solution for the CO snow line radius for late disk evolutionary times. This will be useful for future observational attempts to characterize the demographics and predict the composition and habitability of exoplanets.

Friday, February 21, 2014

Modeling the Atmospheres of hot Jupiters HD 189733b and HD 209458b

The Atmospheric Circulation and Observable Properties of Non-Synchronously Rotating Hot Jupiters


Rauscher et al


We study the feasibility of observationally constraining the rotation rate of hot Jupiters, planets that are typically assumed to have been tidally locked into synchronous rotation. We use a three-dimensional General Circulation Model to solve for the atmospheric structure of two hot Jupiters (HD 189733b and HD 209458b), assuming rotation periods that are 0.5, 1, or 2 times their orbital periods (2.2 and 3.3 days, respectively), including the effect of variable stellar heating. We compare two observable properties: 1) the spatial variation of flux emitted by the planet, measurable in orbital phase curves, and 2) the net Doppler shift in transmission spectra of the atmosphere, which is tantalizingly close to being measurable in high-resolution transit spectra. Although we find little difference between the observable properties of the synchronous and non-synchronous models of HD 189733b, we see significant differences when we compare the models of HD 209458b. In particular, the slowly rotating model of HD 209458b has an atmospheric circulation pattern characterized by westward flow and an orbital phase curve that peaks after secondary eclipse (in contrast to all of our other models), while the quickly rotating model has a net Doppler shift that is more strongly blue-shifted than the other models. Our results demonstrate that the combined use of these two techniques may be a fruitful way to constrain the rotation rate of some planets, and motivate future work on this topic.

Transmission Spectra Observed by Ground Telescopes Finds Water in hot Jupiter HD-189733b

0.94 - 2.42 micron ground-based transmission spectra of the hot-Jupiter HD-189733b


Danielski et al


We present here new transmission spectra of the hot Jupiter HD-189733b using the SpeX instrument on the NASA Infrared Telescope Facility. We obtained two nights of observations where we recorded the primary transit of the planet in the J-, H- and K-bands simultaneously, covering a spectral range from 0.94 to 2.42 {\mu}m. We used Fourier analysis and other de-trending techniques validated previously on other datasets to clean the data. We tested the statistical significance of our results by calculating the auto-correlation function, and we found that, after the detrending, auto-correlative noise is diminished at most frequencies. Additionally, we repeated our analysis on the out-of-transit data only, showing that the residual telluric contamination is well within the error bars. While these techniques are very efficient when multiple nights of observations are combined together, our results prove that even one good night of observations is enough to provide statistically meaningful data. Our observed spectra are consistent with space-based data recorded in the same wavelength interval by multiple instruments, indicating that ground-based facilities are becoming a viable and complementary option to spaceborne observatories. The best fit to the features in our data was obtained with water vapor. Our error bars are not small enough to address the presence of additional molecules, however by combining the information contained in other datasets with our results, it is possible to explain all the available observations with a modelled atmospheric spectrum containing water vapor, methane, carbon monoxide and hazes/clouds.

Thursday, February 20, 2014

Tidally Locked Terrestrial Planets Benefit From Ocean Heat Transport

Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars


Hu et al


The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

Wednesday, February 19, 2014

Using Spectra to Study Exoatmospheres

Spectra as windows into exoplanet atmospheres




Understanding a planet’s atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

Tuesday, February 18, 2014

Orbital Evolution of Hot Jupiters

Tidal Dissipation and Obliquity Evolution in Hot Jupiter Systems


Valsecchi et al


Two formation scenarios have been proposed to explain the tight orbits of hot Jupiters. These giant planets could be formed in low-obliquity orbits via disk migration or in high-obliquity orbits via high-eccentricity migration, where gravitational interactions with a companion are at play, together with tidal dissipation. Here we target the observed misaligned hot Jupiter systems to investigate whether their current properties are consistent with high-eccentricity migration. Specifically, we study whether tidal dissipation in the star can be responsible for the observed distribution of misalignments and orbital separations. Improving on previous studies, we use detailed models for the stellar component, thus accounting for how convection (and thus tidal dissipation) depends on the host star properties. We find that the currently observed degree of misalignment increases as the amount of surface convection in the host star decreases. This trend supports the hypothesis that tides are the mechanism shaping the observed distribution of misalignments. Furthermore, we study the past orbital evolution of four representative systems. We consider various initial orbital configurations and integrate the equations describing the coupled evolution of the orbital separation, stellar spin, and misalignment. We account for tidal dissipation in the star, stellar wind mass loss, changes in the star's internal structure as a result of stellar evolution, and magnetic braking. We show that the current properties of these four representative systems can be explained naturally, given our current understanding of tidal dissipation and with physically motivated assumptions for the effects driving the orbital evolution.

Monday, February 17, 2014

Two Different Paths to Forming Brown Dwarfs

Statistical properties of brown dwarf companions: implications for different formation mechanisms


Ma et al


The mass domain where massive extrasolar planets and brown dwarfs overlap is still poorly understood due to the paucity of brown dwarfs orbiting close to solar-type stars, the so-called brown dwarf desert. In this paper, we collect all available data about close brown dwarfs around solar-type stars and their host stars from literature and study the demographics of the brown dwarf desert. The data clearly show a short period and a medium mass gap in the brown dwarf period–mass distribution diagram (35 less than m sin i less than 55MJup and P less than 100 d), representing the ‘driest land’ in the brown dwarf desert. Observation biases are highly unlikely to cause this gap due to its short period and medium mass, of which brown dwarfs can be easily detected by previous radial velocity surveys. Brown dwarfs above and below this gap have significantly different eccentricity distribution, which not only confirms that this gap is real, but also implies that they may have different origins. Our further statistical study indicates that brown dwarfs below this gap may primarily form in the protoplanetary disc through disc gravitational instability, while brown dwarfs above this gap may dominantly form like a stellar binary through molecular cloud fragmentation. Our discoveries have offered important insights about brown dwarf formation mechanisms and their possible relationships with planet and star formation.

Sunday, February 16, 2014

PopSci: Alien Earths

Last month, the American Astronomical Society's 223rd meeting featured the announcement of a few breakthroughs: Using the Kepler space observatory, researchers had discovered a planet roughly the mass of Earth orbiting a star beyond our solar system, and with the Hubble telescope they had provided the first detailed look at the weather of a "super Earth" — a planet larger than ours but smaller than Neptune — in our galactic neighborhood. Astronomers found that GJ 1214b, like much of the Earth on any given day, is cloudy.

These similarities to Earth are tantalizing. But despite them, these planets' respective solar systems look nothing like our own. Rather than circling a big, hot, yellow sun like ours, they spin around small, cool, red stars called red dwarfs. Kind of like Krypton. Although not visible to the naked eye from Earth, these red dwarfs are the most populous stars in the Milky Way. And over the last year, a flurry of research has shown that red dwarf stars are also the best targets in the search for exoplanets that might support life. Right now the chances that a red dwarf star has a planet orbiting in its habitable zone, an astronomical goldilocks area neither too hot nor too cold for liquid water, are better than for a star like our sun. Research also suggests that these planets (and maybe life on them) behave in ways that, from our Earth-centric view, seem bizarre.

Saturday, February 15, 2014

11 Exoplanet Host Stars Characterized

Stellar diameters and temperatures – V. 11 newly characterized exoplanet host stars


vo Braun et al


We use near-infrared interferometric data coupled with trigonometric parallax values and spectral energy distribution fitting to directly determine stellar radii, effective temperatures and luminosities for the exoplanet host stars 61 Vir, ρ CrB, GJ 176, GJ 614, GJ 649, GJ 876, HD 1461, HD 7924, HD 33564, HD 107383 and HD 210702. Three of these targets are M dwarfs. Statistical uncertainties in the stellar radii and effective temperatures range from 0.5 to 5 per cent and from 0.2 to 2 per cent, respectively. For eight of these targets, this work presents the first directly determined values of radius and temperature; for the other three, we provide updates to their properties. The stellar fundamental parameters are used to estimate stellar mass and calculate the location and extent of each system's circumstellar habitable zone. Two of these systems have planets that spend at least parts of their respective orbits in the system habitable zone: two of GJ 876's four planets and the planet that orbits HD 33564. We find that our value for GJ 876's stellar radius is more than 20 per cent larger than previous estimates and frequently used values in the astronomical literature.

Are Y Class Dwarfs Bridges Between Brown Dwarfs and Exoplanets?



Beichman et al


We have determined astrometric positions for 15 WISE-discovered late-type brown dwarfs (six T8-9 and nine Y dwarfs) using the Keck-II telescope, the Spitzer Space Telescope, and the Hubble Space Telescope. Combining data from 8 to 20 epochs we derive parallactic and proper motions for these objects, which puts the majority within 15 pc. For ages greater than a few Gyr, as suggested from kinematic considerations, we find masses of 10-30 M Jup based on standard models for the evolution of low-mass objects with a range of mass estimates for individual objects, depending on the model in question. Three of the coolest objects have effective temperatures ~350 K and inferred masses of 10-15 M Jup. Our parallactic distances confirm earlier photometric estimates and direct measurements and suggest that the number of objects with masses below about 15 M Jup must be flat or declining, relative to higher mass objects. The masses of the coldest Y dwarfs may be similar to those inferred for recently imaged planet-mass companions to nearby young stars. Objects in this mass range, which appear to be rare in both the interstellar and protoplanetary environments, may both have formed via gravitational fragmentation—the brown dwarfs in interstellar clouds and companion objects in a protoplanetary disk. In both cases, however, the fact that objects in this mass range are relatively infrequent suggests that this mechanism must be inefficient in both environments.

Erratum Plus Paper for KIC 8435766's Terrestrial Sized World in a 8.5 Hour orbit



Sanchis-Ojeda et al


We report the discovery of an Earth-sized planet (1.16 ± 0.19 R ⊕) in an 8.5 hr orbit around a late G-type star (KIC 8435766, Kepler-xx). The object was identified in a search for short-period planets in the Kepler database and confirmed to be a transiting planet (as opposed to an eclipsing stellar system) through the absence of ellipsoidal light variations or substantial radial-velocity variations. The unusually short orbital period and the relative brightness of the host star (m Kep = 11.5) enable robust detections of the changing illumination of the visible hemisphere of the planet, as well as the occultations of the planet by the star. We interpret these signals as representing a combination of reflected and reprocessed light, with the highest planet dayside temperature in the range of 2300 K-3100 K. Follow-up spectroscopy combined with finer sampling photometric observations will further pin down the system parameters and may even yield the mass of the planet.


Friday, February 14, 2014

Migration of Terrestrial Sized Exoplanets

Migration of Earth-size planets in 3D radiative discs


Legga et al


In this paper, we address the migration of small mass planets in 3D radiative disks. Indeed, migration of small planets is known to be too fast inwards in locally isothermal conditions. However, thermal effects could reverse its direction, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. This effect has been seen for masses larger than 5 Earth masses, but the minimum mass for this to happen has never been probed numerically, although it is of crucial importance for planet formation scenarios. We have extended the hydro-dynamical code FARGO to 3D, with thermal diffusion. With this code, we perform simulations of embedded planets down to 2 Earth masses. For a set of discs parameters for which outward migration has been shown in the range of [5,35] Earth masses, we find that the transition to inward migration occurs for masses in the range [3,5] Earth masses. The transition appears to be due to an unexpected phenomenon: the formation of an asymmetric cold and dense finger of gas driven by circulation and libration streamlines. We recover this phenomenon in 2D simulations where we control the cooling effects of the gas through a simple modeling of the energy equation.

How Habitable are Mars-sized Terrestrial Worlds Around Red Dwarf Stars?

Thermal--orbital coupled tidal heating and habitability of Martian-sized extrasolar planets around M stars


Shoji et al


M type stars are good targets in the search for habitable extrasolar planets. Because of their low effective temperatures, the habitable zone of M stars is very close to the star itself. For planets close to their stars, tidal heating plays an important role in thermal and orbital evolutions, especially when the planet orbit has a relatively large eccentricity. Although tidal heating interacts with the thermal state and orbit of the planet, such coupled calculations for extrasolar planets around M star have not been conducted. We perform coupled calculations using simple structural and orbital models, and analyze the thermal state and habitability of a terrestrial planet. Considering this planet to be Martian sized, the tide heats up and partially melts the mantle, maintaining an equilibrium state if the mass of the star is less than 0.2 times the mass of the Sun and the initial eccentricity of the orbit is more than 0.2. The reduction of heat dissipation due to the melted mantle allows the planet to stay in the habitable zone for more than 10 Gyr even though the orbital distance is small. The surface heat flux at the equilibrium state is around 0.2 W m−2, which is between that of Mars and Io. The thermal state of the planet mainly depends on the initial value of the eccentricity and the mass of the star, which can be estimated from the observation.

Tests for Whether or not HD 204313 has a Terrestrial Exoplanet in the Habitable Zone

A dynamical test for terrestrial planets in the habitable zone of HD 204313


Thilliez et al


With improvements in exoplanet detection techniques, the number of multiple planet systems discovered is increasing, while the detection of potentially habitable Earth-mass planets remains complicated and thus requires new search strategies. Dynamical studies of known multiple planet systems are therefore a vital tool in the search for stable and habitable planet candidates. Here, we present a dynamical study of the three-planet system HD 204313 to determine whether it could harbour an Earth-like planet within its habitable zone for a sufficient time to develop life. We found two semi-stable regions in the system, but neither prove stable for long enough for a terrestrial planet to develop life. Our investigations suggest that overlapping weak and high order resonances may be responsible for these semi-stable regions. This study established a framework for a larger project that will study the dynamical stability of the habitable zone of multiple planet systems, providing a list of interesting targets for future habitable low-mass planet searches.

Thursday, February 13, 2014

Luhman 16AB Have Patchy Mineral Clouds?

A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability


Burgasser et al


We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot brightness temperature model, we infer an average cloud covering fraction of ~30-55% for Luhman 16B, varying by 15-30% over a rotation period. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for three highly variable T dwarfs, and predicts relatively fast winds (1-3 km/s) for Luhman 16B consistent with lightcurve evolution on an advective time scale (1-3 rotation periods). Our observations support the model of a patchy disruption of the mineral cloud layer as a universal feature of the L dwarf/T dwarf transition.

From Disk to Orbit Evolution of Exoplanets

Evolution of a disc-planet system with a binary companion on an inclined orbit




We study orbital inclination changes associated with the precession of a disc-planet system that occurs through gravitational interaction with a binary companion on an inclined orbit. We investigate whether this scenario can account for giant planets on close orbits highly inclined to the stellar equatorial plane. We obtain conditions for maintaining approximate coplanarity and test them with SPH-simulations. For parameters of interest, the system undergoes approximate rigid body precession with modest warping while the planets migrate inwards. Because of pressure forces, disc self-gravity is not needed to maintain the configuration. We consider a disc and single planet for different initial inclinations of the binary orbit to the midplane of the combined system and a system of three planets for which migration leads to dynamical instability that reorders the planets. As the interaction is dominated by the time averaged quadrupole component of the binary's perturbing potential, results for a circular orbit can be scaled to apply to eccentric orbits. The system responded adiabatically when changes to binary orbital parameters occurred on time scales exceeding the orbital period. Accordingly inclination changes are maintained under its slow removal. Thus the scenario for generating high inclination planetary orbits studied here, is promising.

Predictions for Exoplanet Locations if Planetary Formation at or Beyond the Snowline is Inefficient



Jin et al


We show that the diversity of extrasolar planetary systems may be related to the diversity of molecular cloud cores. In previous studies of planet formation, artificial initial conditions of protoplanetary disks or steady state disks, such as the minimum mass nebula model, have often been used so that the influence of cloud core properties on planet formation is not realized. To specifically and quantitatively demonstrate our point, we calculate the dependence of disk properties on cloud core properties and show that the boundary of the giant planet formation region in a disk is a function of cloud core properties with the conventional core accretion model of giant planet formation. The gravitational stability of a disk depends on the properties of its progenitor cloud core. We also compare our calculations with observations of extrasolar planets. From the observational data of cloud cores, our model could infer the range and most frequent values of observed semimajor axes of extrasolar planets. Our calculations suggest that planet formation at the snowline alone could not completely explain the semimajor axis distribution. If the current observations are not biased, our calculations indicate that the planet formation at the snowline is inefficient. We suggest that there will be more observed planets with semimajor axis less than 9 AU than greater than 9 AU, even with a longer duration of observations, if the planet formation at the snowline is inefficient.

Wednesday, February 12, 2014

Interactions Between Star and Protoplanetary Disk can Cause Spin Misalignments

Star-Disc-Binary Interactions in Protoplanetary Disc Systems and Primordial Spin-Orbit Misalignments


Lai et al


We study the interactions between a protostar and its circumstellar disc under the influence of an external binary companion to determine the evolution of the mutual stellar spin - disc misalignment angle. The gravitational torque on the disc from an inclined binary makes the disc precess around the binary axis, while the star-disc interaction torque due to the rotation-induced quadrupole makes the stellar spin and the disc angular momentum axes precess around each other. A significant star-disc misalignment angle can be generated from a small initial value as the star-disc system evolves in time such that the two precession frequencies cross each other. This ``secular resonance'' behavior can be understood in a geometric way from the precession dynamics of spin and disc angular momenta. We derive the conditions for such resonance to occur, and find that they can be satisfied for reasonable protostar-disc-binary parameters. The evolution of star-disc inclination is also affected by mass accretion and by magnetic star-disc interaction torques, which can either promote or reduce star-disc misalignment. In general, as long as the initial binary-disc inclination is greater than a few degrees, a variety of star-disc misalignment angles can be generated within the disc lifetimes. We discuss the implications of our results for the stellar spin orientations in binaries, for the alignments/misalignments of protostellar discs and debris discs, and for the stellar obliquities in exoplanetary systems. In particular, if hot Jupiters are produced by the Kozai effect induced by an external stellar companion, then it is likely that ``primordial'' star-disc misalignments are already generated by the star-disc-binary interactions. Even for systems where the Kozai effect is suppressed, misaligned planets may still be produced during the protoplanetary disc phase.

Particle Behavior of the Outer Regions of Protoplanetary Disks

Efficiency of Particle Trapping in the Outer Regions of Protoplanetary Disks


Simon et al


We investigate the strength of axisymmetric local pressure maxima (zonal flows) in the outer regions of protoplanetary disks, where ambipolar diffusion reduces turbulent stresses driven by the magnetorotational instability. Using local numerical simulations we show that in the absence of net vertical magnetic fields, the strength of turbulence in the ambipolar dominated region of the disk is low and any zonal flows that are present are weak. For net fields strong enough to yield observed protostellar accretion rates, however, zonal flows with a density amplitude of 10-20% are formed. These strengths are comparable to those seen in simulations of ideal MHD disk turbulence. We investigate whether these zonal flows are able to reverse the inward radial drift of solids, leading to prolonged and enhanced concentration as a prelude to planetesimal formation. For commonly assumed mean surface density profiles (surface density proportional to radius to the -1/2 power or steeper) we find that the predicted perturbations to the background disk profile do not correspond to local pressure maxima. This is a consequence of radial width of the simulated zonal flows, which is larger than was assumed in prior analytic models of particle trapping. These larger scale flows would only trap particles for higher amplitude fluctuations than observed. We conclude that zonal flows are likely to be present in the outer regions of protoplanetary disks and are potentially large enough to be observable, but are unlikely to lead to strong particle trapping.

Does the Disk Around HD 32297 Have Cometary Grains?


Rodigas et al


We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 μm) obtained with the LBTI/LMIRcam infrared instrument at the Large Binocular Telescope. The disk is detected at signal-to-noise ratio per resolution element ~3-7.5 from ~0.''3 to 1.''1 (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates that the disk is not perfectly edge-on and contains highly forward-scattering grains. Interior to ~50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at lsim50 AU. Comparing the color of the outer (50

Tuesday, February 11, 2014

Stellar Cycles of Alpha Centauri A / B





The following is a progress report on the long-term coronal (T ~ 1 MK) activity of α Centauri A (HD 128620: G2 V) and B (HD 128621: K1 V). Since 2005, Chandra X-Ray Observatory has carried out semiannual pointings on AB, mainly with the High Resolution Camera, but also on two occasions with the Low-Energy Transmission Grating Spectrometer, fully resolving the close pair in all cases. During 2008-2013, Chandra captured the rise, peak, and initial decline of B's coronal luminosity. Together with previous high states documented by ROSAT and XMM-Newton, the long-term X-ray record suggests a period of 8.1 ± 0.2 yr, compared to 11 yr for the Sun, with a minimum-to-peak contrast of 4.5, about half the typical solar cycle amplitude. Meanwhile, the A component has been mired in a Maunder-Minimum-like low state since 2005, initially recognized by XMM-Newton. But now, A finally appears to be climbing out of the extended lull. If interpreted simply as an overlong cycle, the period would be 19.2 ± 0.7 yr, with a minimum-to-peak contrast of 3.4. The short X-ray cycle of B, and possibly long cycle of A, are not unusual compared with the diverse (albeit much lower amplitude) chromospheric variations recorded, for example, by the HK Project. Further, the deep low state of A also is not unusual, but instead is similar to the L X/L bol of the Sun during recent minima of the sunspot cycle.

ULAS J222711-004547: a Very red, Very Dusty L Class Brown Dwarf

The extremely red L dwarf ULAS J222711−004547 – dominated by dust


Marocco et al


We report the discovery of a peculiar L dwarf from the UKIDSS LAS, ULAS J222711-004547. The very red infrared photometry (MKO J-K = 2.79±0.06, WISE W1-W2 = 0.65±0.05) of ULAS J222711-004547 makes it one of the reddest brown dwarfs discovered so far. We obtained a moderate resolution spectrum of this target, and classify it as L7pec, confirming its very red nature. Comparison to theoretical models suggests that the object could be a low-gravity L dwarf with a solar or higher than solar metallicity. Nonetheless, the match of such fits to the spectrum is rather poor and this and other peculiar red L dwarfs pose new challenges for the modeling of ultracool atmospheres. We determined the proper motion of ULAS J222711-004547 using the data available in the literature, and we find that its kinematics do not suggest membership of any of the known young associations. We show that applying a simple de-reddening curve to its spectrum allows it to resemble the spectra of the L7 spectroscopic standards. Given the negligible interstellar reddening of the field containing our target, we conclude that the reddening of the spectrum is mostly due to an excess of dust in the photosphere of the target. De-reddening the spectrum using extinction curves for different dust species gives surprisingly good results and suggests a characteristic grain size of ∼0.5 μm. We show that by increasing the optical depth, the same extinction curves allow the spectrum of ULAS J222711-004547 to resemble the spectra of unusually blue L dwarfs and slightly metal-poor L dwarfs. Grains of similar size yield very good fits when de-reddening other unusually red L dwarfs in the L5 to L7.5 range. These results suggest that the diversity in near infrared colours and spectra seen in late-L dwarfs could be due to differences in the optical thickness of the dust cloud deck.

MOA-2011-BLG-322Lb: 12 Jupiter Mass Gas Giant at 4.3 AU

MOA-2011-BLG-322Lb: a ‘second generation survey’ microlensing planet


Shvartzvald et al


Global ‘second-generation’ microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups, without prompting alerts that could have led to dedicated follow-up observations. Fitting a microlensing model to the data, we find that the time-scale of the event was tE = 23.2 ± 0.8 d, and the mass ratio between the lens star and its companion is q = 0.028 ± 0.001. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.39+0.45−0.19M⊙, at a distance of 7.56 ± 0.91 kpc. Thus, the companion is likely a planet of mass 11.6+13.4−5.6MJ, at a projected separation of 4.3+1.5−1.2 au, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems’ snow lines.

Monday, February 10, 2014

3 New Brown Dwarfs: WISE J094305.98+360723.5, WISE J200050.19+362950.1 & WISE J220905.73+271143.9

Three New Cool Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer (WISE) and an Improved Spectrum of the Y0 Dwarf WISE J041022.71+150248.4


Cushing et al


As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to seventeen. In addition, we present an improved spectrum (i.e. higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to measure their mass via astrometric microlensing.

What is Known of Exoplanet Atmospheres

Exoplanet Atmospheres


Madhusudhan et al


The study of exoplanetary atmospheres is one of the most exciting and dynamic frontiers in astronomy. Over the past two decades ongoing surveys have revealed an astonishing diversity in the planetary masses, radii, temperatures, orbital parameters, and host stellar properties of exoplanetary systems. We are now moving into an era where we can begin to address fundamental questions concerning the diversity of exoplanetary compositions, atmospheric and interior processes, and formation histories, just as have been pursued for solar system planets over the past century. Exoplanetary atmospheres provide a direct means to address these questions via their observable spectral signatures. In the last decade, and particularly in the last five years, tremendous progress has been made in detecting atmospheric signatures of exoplanets through photometric and spectroscopic methods using a variety of space-borne and/or ground-based observational facilities. These observations are beginning to provide important constraints on a wide gamut of atmospheric properties, including pressure-temperature profiles, chemical compositions, energy circulation, presence of clouds, and non-equilibrium processes. The latest studies are also beginning to connect the inferred chemical compositions to exoplanetary formation conditions. In the present chapter, we review the most recent developments in the area of exoplanetary atmospheres. Our review covers advances in both observations and theory of exoplanetary atmospheres, and spans a broad range of exoplanet types (gas giants, ice giants, and super-Earths) and detection methods (transiting planets, direct imaging, and radial velocity). We close with a discussion of the bright prospects for future studies of exoplanetary atmospheres.

WASP-20b and WASP-28b: a hot Saturn and a hot Jupiter

WASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars


Anderson et al


We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 MJup; 1.46 RJup) in a 4.9-day, near-aligned (λ=8.1±3.6∘) orbit around CD-24 102 (V=10.7; F9). WASP-28b is an inflated, Jupiter-mass planet (0.91 MJup; 1.21 RJup) in a 3.4-day, near-aligned (λ=8±18∘) orbit around a V=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7+2−1 Gyr for WASP-20 and 5+3−2 Gyr for WASP-28; both with Teff < 6250 K), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation.

Sunday, February 9, 2014

Planetesimal Formation is Complicated

The multifaceted planetesimal formation process


Johansen et al


Accumulation of dust and ice particles into planetesimals is an important step in the planet formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of gas and ice giants forming by core accretion. Left-over planetesimals in the form of asteroids, trans-Neptunian objects and comets provide a unique record of the physical conditions in the solar nebula. Debris from planetesimal collisions around other stars signposts that the planetesimal formation process, and hence planet formation, is ubiquitous in the Galaxy. The planetesimal formation stage extends from micrometer-sized dust and ice to bodies which can undergo run-away accretion. The latter ranges in size from 1 km to 1000 km, dependent on the planetesimal eccentricity excited by turbulent gas density fluctuations. Particles face many barriers during this growth, arising mainly from inefficient sticking, fragmentation and radial drift. Two promising growth pathways are mass transfer, where small aggregates transfer up to 50% of their mass in high-speed collisions with much larger targets, and fluffy growth, where aggregate cross sections and sticking probabilities are enhanced by a low internal density. A wide range of particle sizes, from mm to 10 m, concentrate in the turbulent gas flow. Overdense filaments fragment gravitationally into bound particle clumps, with most mass entering planetesimals of contracted radii from 100 to 500 km, depending on local disc properties. We propose a hybrid model for planetesimal formation where particle growth starts unaided by self-gravity but later proceeds inside gravitationally collapsing pebble clumps to form planetesimals with a wide range of sizes.

The Final Growth Phase of Gas Giants

Accretion in giant planet circumplanetary disks


Kieth et el


During the final growth phase of giant planets, accretion is thought to be controlled by a surrounding circumplanetary disk. Current astrophysical accretion disk models rely on hydromagnetic turbulence or gravitoturbulence as the source of effective viscosity within the disk. However, the magnetically-coupled accreting region in these models is so limited that the disk may not support inflow at all radii, or at the required rate. Here, we examine the conditions needed for self-consistent accretion, in which the disk is susceptible to accretion driven by magnetic fields or gravitational instability. We model the disk as a Shakura-Sunyaev α disk and calculate the level of ionisation, the strength of coupling between the field and disk using Ohmic, Hall and Ambipolar diffusevities for both an MRI and vertical field, and the strength of gravitational instability. We find that the standard constant-α disk is only coupled to the field by thermal ionisation within 30RJ with strong magnetic diffusivity prohibiting accretion through the bulk of the midplane. In light of the failure of the constant-α disk to produce accretion consistent with its viscosity we drop the assumption of constant-α and present an alternate model in which α varies radially according to the level magnetic turbulence or gravitoturbulence. We find that a vertical field may drive accretion across the entire disk, whereas MRI can drive accretion out to ∼200RJ, beyond which Toomre's Q=1 and gravitoturbulence dominates. The disks are relatively hot (T≳800K), and consequently massive (Mdisk∼0.5MJ).

The Role of Dust in Protoplanetary Disks

Dust Evolution in Protoplanetary Disks


Testi et al


In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems.

In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures are summarized.
We discuss recent developments in the study of grain growth in molecular cloud cores and in collapsing envelopes of protostars as these provide the initial conditions for the dust in disks. We discuss the observational evidence for the growth of grains in young disks from mm surveys, as well as the recent evidence of radial variations of the dust properties in disks. We include a brief discussion of the constraints on the small end of the grain size distribution and on dust settling as derived from optical and IR observations. The observations are discussed in the context of global dust evolution models, in particular we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of grain sizes in disks. We also highlight the limits of current models, including the need to slow the radial drift of grains.

Saturday, February 8, 2014

Models of Chondrite Component Transport in Protoplanetary Disks Reviewed

Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models


Jacquet et al


We review models of chondrite component transport in the gaseous protoplanetary disk. Refractory inclusions were likely transported by turbulent diffusion and possible early disk expansion, and required low turbulence for their subsequent preservation in the disk, possibly in a dead zone. Chondrules were produced locally but did not necessarily accrete shortly after formation. Water may have been enhanced in the inner disk because of inward drift of solids from further out, but likely not by more than a factor of a few. Incomplete condensation in chondrites may be due to slow reaction kinetics during temperature decrease. While carbonaceous chondrite compositions might be reproduced in a ``two-component'' picture (Anders 1964), such components would not correspond to simple petrographic constituents, although part of the refractory element fractionations in chondrites may be due to the inward drift of refractory inclusions. Overall, considerations of chondrite component transport alone favor an earlier formation for carbonaceous chondrites relative to their noncarbonaceous counterparts, but independent objections have yet to be resolved.

Earth's Signature as a Transiting Exoplanet & E-ELT Will be Able to Detect Biogenic Exoatmospheres out to 10 Parsecs

The Earth as an extrasolar transiting planet - II: HARPS and UVES detection of water vapour and biogenic species O2 and O3


Arnold et al


The atmospheric composition of transiting exoplanets can be characterized during transit by spectroscopy. For an Earth twin, models predict that oxygen and ozone biogenic gases should be detectable, as well as water vapour, a molecule linked to habitability as we know it on Earth. The aim is to measure the Earth radius versus wavelength at the highest spectral resolution available to fully characterize the signature of the Earth seen as a transiting exoplanet. We present observations of Dec. 21, 2010 Moon eclipse. The Earth observed from the Moon during a lunar eclipse transits in front of the Sun and opens access to the Earth atmosphere transmission spectrum. We used two different ESO spectrographs to take penumbra and umbra high-resolution spectra from 3100 to 10400\AA. A change in moisture above the telescope compromised the UVES data. We explain how we correct this effect. The data are analyzed by three different methods, the first method being the method described in Vidal-Madjar et al. 2010 based on the analysis of pairs of penumbra spectra. The second makes use of a single penumbra spectrum, and the third of all penumbra and umbra spectra. Profiles are obtained with the three methods for both instruments. The first method gives the best result, in agreement with a model. The second method seems more sensitive to the Doppler shift of solar spectral lines with respect to the telluric lines. The third method makes use of umbra spectra that bias the result by increasing the overall negative slope of the profile. It can be corrected a posteriori from results with the first method. The three methods clearly show the spectral signature of the Rayleigh scattering in the Earth atmosphere and the bands of H2O, O2 and O3. Sodium is detected. Finally we show that the E-ELT will be able to detect the O2 A-band, and O3 and water vapour to a lesser extent, for an Earth twin at 10pc.

A Survey of the Known and Potentially Upcoming in Exoplanetary Science

Galactic planetary science


Tinetti et al


Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets -mainly radial velocity and transit - or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, we review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade.More critically, we identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

Friday, February 7, 2014

Data Mining WISE Images Produces Over 22,000 Brown Dwarf Candidates

The AllWISE Motion Survey and The Quest for Cold Subdwarfs


Kirkpatrick et al


The AllWISE processing pipeline has measured motions for all objects detected on WISE images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3,525 have motions that can be independently confirmed from earlier 2MASS images yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a "subdwarf gap" at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list -- WISEA J154045.67-510139.3 -- is a bright (J ~ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman (2014). While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products.

Simulations of Kepler-34(AB)b's System

Forming Circumbinary Planets: N-body Simulations of Kepler-34


Lines et al


Observations of circumbinary planets orbiting very close to the central stars have shown that planet formation may occur in a very hostile environment, where the gravitational pull from the binary should be very strong on the primordial protoplanetary disk. Elevated impact velocities and orbit crossings from eccentricity oscillations are the primary contributors towards high energy, potentially destructive collisions that inhibit the growth of aspiring planets. In this work, we conduct high resolution, inter-particle gravity enabled N-body simulations to investigate the feasibility of planetesimal growth in the Kepler-34 system. We improve upon previous work by including planetesimal disk self-gravity and an extensive collision model to accurately handle inter-planetesimal interactions. We find that super-catastrophic erosion events are the dominant mechanism up to and including the orbital radius of Kepler-34(AB)b, making in-situ growth unlikely. It is more plausible that Kepler-34(AB)b migrated from a region beyond 1.5 AU. Based on the conclusions that we have made for Kepler-34 it seems likely that all of the currently known circumbinary planets have also migrated significantly from their formation location with the possible exception of Kepler-47(AB)c.

Binaries Within 20 AU are bad for Planetary Formation



Wang et al


The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (KP less than 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamical stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.a

Thursday, February 6, 2014

Brown Dwarf Candidates Found Near Gliese 86, HD 160691, Gliese 581; In Field of View of HD 69830 and 47 UMa

A Mid-Infrared Search for Substellar Companions of Nearby Planet-Host Stars


Hulsebus et al


Determining the presence of widely separated substellar-mass companion is crucial to understand the dynamics of inner planets in extrasolar planetary systems (e.g. to explain their high mean eccentricity as inner planets are perturbed by the Kozai mechanism). We report the results of our Spitzer/Infrared Array Camera (IRAC) imaging search for widely separated (10 to 25′′) substellar-mass companions for 14 planet-host stars within 15 pc of the Sun. Using deep 3.6 and 4.5 μm observations in subarray mode, we found one object in the field of 47 UMa with [3.6]−[4.5] color similar to a T5 dwarf, which is, however, unlikely to share common proper motion with 47 UMa. We also found three objects with brown-dwarf-like [3.6]−[4.5] color limits in the fields of GJ 86, HD 160691, and GJ 581, as well as another in the field of HD 69830 for which we have excluded common proper motion. We provide model-based upper mass limits for unseen objects around all stars in our sample, with typical sensitivity to 10 MJ objects from a projected separation of 50 to 300 au from the parent star. We also discuss our data analysis methods for point-spread-function subtraction, image co-alignment, and artifact subtraction of IRAC subarray images.

Hot Jupiter CoRoT-1b Appears to NOT Have Titanium Oxide or Vanadium Oxide in its Exoatmosphere



Schlawin et al


Hot Jupiters with brightness temperatures gsim2000 K can have TiO and VO molecules as gaseous species in their atmospheres. The TiO and VO molecules can potentially induce temperature inversions in hot Jupiter atmospheres and also have an observable signature of large optical to infrared transit depth ratios. Previous transmission spectra of very hot Jupiters have shown a lack of TiO and VO, but only in planets that also appear to lack temperature inversions. We measure the transmission spectrum of CoRoT-1b, a hot Jupiter that was predicted to have a temperature inversion potentially due to significant TiO and VO in its atmosphere. We employ the multi-object spectroscopy method using the SpeX and MORIS instruments on the Infrared Telescope Facility (IRTF) and the Gaussian process method to model red noise. By using a simultaneous reference star on the slit for calibration and a wide slit to minimize slit losses, we achieve transit depth precision of 0.03%-0.09%, comparable to the atmospheric scale height but detect no statistically significant molecular features. We combine our IRTF data with optical CoRoT transmission measurements to search for differences in the optical and near-infrared absorption that would arise from TiO/VO. Our IRTF spectrum and the CoRoT photometry disfavor a TiO/VO-rich spectrum for CoRoT-1b, suggesting that the atmosphere has another absorber that could create a temperature inversion or that the blackbody-like emission from the planet is due to a spectroscopically flat cloud, dust, or haze layer that smoothes out molecular features in both CoRoT-1b's emission and transmission spectra. This system represents the faintest planet hosting star (K = 12.2) with a measured planetary transmission spectrum.

Water Detected in Hot Jupiter Tau Boo b

Near-IR Direct Detection of Water Vapor in Tau Boo b


Lockwood et al


We use high dynamic range, high-resolution L-band spectroscopy to measure the radial velocity variations of the hot Jupiter in the tau Bootis planetary system. The detection of an exoplanet by the shift in the stellar spectrum alone provides a measure of the planet's minimum mass, with the true mass degenerate with the unknown orbital inclination. Treating the tau Boo system as a high flux ratio double-lined spectroscopic binary permits the direct measurement of the planet's true mass as well as its atmospheric properties. After removing telluric absorption and cross-correlating with a model planetary spectrum dominated by water opacity, we measure a 6-sigma detection of the planet at K_p = 111 +- 5 km/s, with a 1-sigma upper limit on the spectroscopic flux ratio of 10^-4. This radial velocity leads to a planetary orbital inclination of i = 45+3-4degrees and a mass of M_P = 5.90+0.35-0.20 M_ Jup. We report the first detection of water vapor in the atmosphere of a non-transiting hot Jupiter, tau Boo b.

Wednesday, February 5, 2014

Erratum for QATAR-2 Detection



Bryan et al

Original Abstract from original paper:

We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P b = 1.34 days. The mass and radius of Qatar-2b are M P = 2.49 M J and R P = 1.14 R J, respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M J. Thus, Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar.

Simulating the Effects of Stars Passing Close to Exoplanet Systems

Effects of stellar flybys on planetary systems: 3D modeling of the circumstellar disks damping effects


Picogna et al


Stellar flybys in star clusters are suspected to affect the orbital architecture of planetary systems causing eccentricity excitation and orbital misalignment between the planet orbit and the equatorial plane of the star. We explore whether the impulsive changes in the orbital elements of planets, caused by an hyperbolic stellar flyby, can be fully damped by the circumstellar disk surrounding the star. The time required to disperse stellar clusters is in fact comparable to circumstellar disk's lifetime. We have modelled in 3D a system made of a solar type star surrounded by a low density disk with a giant planet embedded in it approached on a hyperbolic encounter trajectory by a second star, of similar mass and with its own disk. We focus on extreme configurations where a very deep stellar flyby perturbs a Jovian planet on an external orbit. This allows to test in full the ability of the disk to erase the effects of the stellar encounter. We find that the amount of mass lost by the disk during the stellar flyby is less than in 2D models where a single disk was considered due to the mass exchange between the two disks at the encounter. The damping in eccentricity is slightly faster than in 2D models and it occurs on timescales of the order of a few kyr. The only trace of the flyby left in the planet system, after about 10^4 yr, is a small misalignment, lower than 9 degrees, between the star equatorial plane and the planet orbit. In a realistic model based on 3D simulations of star--planet--disk interactions, we find that stellar flybys cannot excite significant eccentricities and inclinations of planets in stellar clusters. The circumstellar disks hosting the planets damp on a short timescale all the step changes in the two orbital parameters produced during any stellar encounter. All records of past encounters are erased.

Unknown Properties of Stars Effect Their Habitable Zones





An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.

Tuesday, February 4, 2014

Orbital Dynamics of Multi-Planet Systems With Eccentricity Diversity

Orbital Dynamics of Multi-Planet Systems with Eccentricity Diversity


Kane et al


Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Amongst these are planets in highly eccentric orbits (e greater than 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals. We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.

Water on Exoplanets

Water: from clouds to planets


van Dishoeck et al


Results from recent space missions, in particular Spitzer and Herschel, have lead to significant progress in our understanding of the formation and transport of water from clouds to disks, planetesimals, and planets. In this review, we provide the underpinnings for the basic molecular physics and chemistry of water and outline these advances in the context of water formation in space, its transport to a forming disk, its evolution in the disk, and finally the delivery to forming terrestrial worlds and accretion by gas giants. Throughout, we pay close attention to the disposition of water as vapor or solid and whether it might be subject to processing at any stage. The context of the water in the solar system and the isotopic ratios (D/H) in various bodies are discussed as grounding data point for this evolution. Additional advances include growing knowledge of the composition of atmospheres of extra-solar gas giants, which may be influenced by the variable phases of water in the protoplanetary disk. Further, the architecture of extra-solar systems leaves strong hints of dynamical interactions, which are important for the delivery of water and subsequent evolution of planetary systems. We conclude with an exploration of water on Earth and note that all of the processes and key parameters identified here should also hold for exoplanetary systems.

3 False Positives Detected for Exoplanets

Asteroseismology of eclipsing binary stars using Kepler and the HERMES spectrograph


Schmid et al


We introduce our PhD project in which we focus on pulsating stars in eclipsing binaries. The combination of high-precision Kepler photometry with high-resolution HERMES spectroscopy allows for detailed descriptions of our sample of target stars. We report here the detection of three false positives by radial velocity measurements.

Monday, February 3, 2014

What Comes After Kepler

People love a comeback story. It can be an athlete rehabilitating from a devastating injury, or a politician regrouping after an electoral defeat, or an entertainer who has fallen out of the limelight. In all those cases, the story of recovering from that setback and trying to reclaim their former fame and glory can be a compelling one.

The same came be true for space missions as well. In the early 1990s, the Hubble Space Telescope was the butt of comedians’ jokes because of its blurry optics. After servicing missions to correct its optics and perform other upgrades, Hubble has become one of NASA’s most beloved missions in the minds of public, so much so that there was a public outcry ten years ago after NASA cancelled the final Hubble servicing mission, a reaction that fueled the successful effort to restore it. Now, some scientists and engineers are hoping that another NASA mission, all but declared dead last year, can write a comeback story of its own.