Temperature Fluctuations as a Source of Brown Dwarf Variability
Authors:
Robinson et al
Abstract:
A number of brown dwarfs are now known to be variable with observed amplitudes as large as 10-30% at some wavelengths. While spatial inhomogeneities in cloud coverage and thickness are likely responsible for much of the observed variability, it is possible that some of the variations arise from atmospheric temperature fluctuations instead of, or in addition to, clouds. To better understand the role that thermal variability might play we present a case study of brown dwarf variability using a newly-developed one-dimensional, time-stepping model of atmospheric thermal structure. We focus on the effects of thermal perturbations, intentionally simplifying the problem through omission of clouds and atmospheric circulation. Model results demonstrate that thermal perturbations occurring deep in the atmosphere (at pressures greater than 10 bar) of a model T-dwarf can be communicated to the upper atmosphere through radiative heating via the windows in near-infrared water opacity. The response time depends on where in the atmosphere a thermal perturbation is introduced. We show that, for certain periodic perturbations, the emission spectrum can have complex, time- and wavelength-dependent behaviors, including phase shifts in times of maximum flux observed at different wavelengths. Since different wavelengths probe different levels in the atmosphere, these variations track a wavelength-dependent set of radiative exchanges happening between different atmospheric levels as a perturbation evolves in time. We conclude that thermal--as well as cloud--fluctuations must be considered as possible contributors to the observed brown dwarf variability.
Friday, March 21, 2014
Brown Dwarf Temperature Fluctuations may Explain Variability
Labels:
brown dwarf,
emission spectra,
internal structure
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.