Wednesday, May 7, 2014

Detecting Exoplanets with Inferometers

Planet transit and stellar granulation detection with interferometry

Authors:


Chiavassa et al

Abstract:

Aims.

We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger-grid and synthetic images computed with the radiative transfer code Optim3D to provide interferometric observables to extract the signature of stellar granulation and transiting planets.

Methods.

We computed intensity maps from RHD simulations for twelve interferometric instruments covering wavelengths ranging from optical to infrared. The stellar surface asymmetries in the brightness distribution mostly affect closure phases. We compared the closure phases of the system star with a transiting planet and the star alone and considered the impact of magnetic spots constructing a hypothetical starspots image.

Results.

All the simulations show departure from the axisymmetric case at all wavelengths. We presented two possible targets (Beta Com and Procyon) and found that departures up to 16 deg can be detected on the 3rd lobe and higher. In particular, MIRC is the most appropriate instrument because it combines good UV coverage and long baselines. Moreover, we explored the impact of convection on interferometric planet signature for three prototypes of planets. It is possible to disentangle the signature of the planet at particular wavelengths (either in the infrared or in the optical) by comparing the closure phases of the star at difference phases of the planetary transit.

Conclusions.

The detection and characterisation of planets must be based on a comprehensive knowledge of the host star; this includes the detailed study of the stellar surface convection with interferometric techniques. In this context, RHD simulations are crucial to reach this aim. We emphasize that interferometric observations should be pushed at high spatial frequencies by accumulating observations on closure phases at short and long baselines.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.