LOW EXTREME-ULTRAVIOLET LUMINOSITIES IMPINGING ON PROTOPLANETARY DISKS
Authors:
Pascucci et al
Abstract:
The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (~2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042 photons s–1 for all sources without jets and lower than 5 × 1040 photons s–1 for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.
Saturday, November 1, 2014
EUV Does NOT Drive Protoplanetary Disk Evaporation
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.