Delamination in super-Earths extrapolated from the Earth model
Authors:
Shoji et al
Abstract:
It is suggested that the delamination process, in which the mantle lithosphere is peeled into the asthenosphere, contributes to the topographies and magmatism of the Earth. We investigated the vigorousness of the delamination in super-Earths by applying the Earth model to planets of heavy mass. Delamination is induced in planets of mass 5M⊕5M⊕ by the negative buoyancy of the mantle lithosphere. However, assuming pressure dependent rheology, the thermal Rayleigh number decreases due to the high pressure in super-Earths and thus the magnitude of convection in the Moho decreases. Because reduced convection in the Moho weakens the peeling of the mantle lithosphere, the delaminated area is narrower. The magnitude of the heat flux caused by the delamination process is also reduced in planets large in size compared with Earth. Although further work is needed, our model indicates that delamination can transfer more heat than the conduction of the lithosphere if the planet's mass is less than 5M⊕.
Thursday, February 19, 2015
Delamnination of the Geosphere in SuperEarths
Labels:
internal structure,
planetary structure,
superearths
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.