Capture and Evolution of Planetesimals in Circumjovian Disks
Authors:
D'Angelo et al
Abstract:
We study the evolution of planetesimals in evolved gaseous disks, which orbit a solar-mass star and harbor a Jupiter-mass planet at a_p~5AU. The gas dynamics is modeled with a three-dimensional hydrodynamics code that employes nested-grids and achieves a resolution of one Jupiter's radius in the circumplanetary disk. The code models solids as individual particles. Planetesimals are subjected to gravitational forces by the star and the planet, drag force by the gas, disruption via ram pressure, and mass loss through ablation. The mass evolution of solids is calculated self-consistently with their temperature, velocity, and position. We consider icy and icy/rocky bodies of radius 0.1-100km, initially deployed on orbits around the star within a few Hill radii (Rhill) of the planet's orbit. Planetesimals are scattered inward, outward, and toward disk regions of radius much greater than a_p. Scattering can relocate significant amounts of solids, provided that regions |r-a_p|~ 3Rhill are replenished with planetesimals. Scattered bodies can be temporarily captured on planetocentric orbits. Ablation consumes nearly all solids at gas temperatures greater than ~220K. Super-keplerian rotation around and beyond the outer edge of the gas gap can segregate less than ~0.1km bodies, producing solid gap edges at size-dependent radial locations. Capture, break-up, and ablation of solids result in a dust-laden circumplanetary disk with low surface densities of km-size planetesimals, implying relatively long timescales for satellite formation. After a giant planet acquires most of its mass, accretion of solids is unlikely to alter significantly its heavy-element content. The luminosity generated by solids' accretion can be of a similar order of magnitude to the contraction luminosity.
Wednesday, April 22, 2015
Capture and Evolution of Planetesimals in Circum Gas Giant Disks
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.