Saturday, December 5, 2015

Stochastic Fragmentation of Self-gravitating Disks

Quantification of stochastic fragmentation of self-gravitating discs


Young et al


Using 2D smoothed particle hydrodynamics, we investigate the distribution of wait times between strong shocks in a turbulent, self-gravitating accretion disc. We show the resulting distributions do not depend strongly on the cooling time or resolution of the disc and that they are consistent with the predictions of earlier work (Young & Clarke 2015; Cossins et al. 2009, 2010). We use the distribution of wait times between shocks to estimate the likelihood of stochastic fragmentation by gradual contraction of shear-resistant clumps on the cooling time scale. We conclude that the stochastic fragmentation mechanism (Paardekooper 2012) cannot change the radius at which fragmentation is possible by more than ~20%, restricting direct gravitational collapse as a mechanism for giant planet formation to the outer regions of protoplanetary discs.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.