Tuesday, April 29, 2014

Detecting Chlorophyll With ATLAST

Prospects for Detecting Oxygen, Water, and Chlorophyll in an Exo-Earth

Authors:

Brandt et al

Abstract:

The goal of finding and characterizing nearby Earth-like planets is driving many NASA high-contrast flagship mission concepts, the latest of which is known as the Advanced Technology Large-Aperture Space Telescope (ATLAST). In this article, we calculate the optimal spectral resolution R=λ/δλ and minimum signal-to-noise ratio per spectral bin (SNR), two central design requirements for a high-contrast space mission, in order to detect signatures of water, oxygen, and chlorophyll on an Earth twin. We first develop a minimally parametric model and demonstrate its ability to fit model Earth spectra; this allows us to measure the statistical evidence for each component's presence. We find that water is the most straightforward to detect, requiring a resolving power R greater than approximately 20, while the optimal resolving power for oxygen is likely to be closer to R=150, somewhat higher than the canonical value in the literature. At these resolutions, detecting oxygen will require ~3 times the SNR as water. Chlorophyll, should it also be used by alien plants in photosynthesis, requires ~6 times the SNR as oxygen for an Earth twin, only falling to oxygen-like levels of detectability for a very low cloud cover and/or a very large vegetation covering fraction. This suggests designing a mission for sensitivity to oxygen and adopting a multi-tiered observing strategy, first targeting water, then oxygen on the more favorable planets, and finally chlorophyll on only the most promising worlds.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.