Monday, April 7, 2014

Gas Giants Which Accrete Within the Water Line Will Have High Carbon/Oxygen Ratio

CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK

Authors:

Ali-Dib et al

Abstract:

The C to O ratio is a crucial determinant of the chemical properties of planets. The recent observation of WASP 12b, a giant planet with a C/O value larger than that estimated for its host star, poses a conundrum for understanding the origin of this elemental ratio in any given planetary system. In this paper, we propose a mechanism for enhancing the value of C/O in the disk through the transport and distribution of volatiles. We construct a model that computes the abundances of major C- and O-bearing volatiles under the influence of gas drag, sublimation, vapor diffusion, condensation, and coagulation in a multi-iceline 1+1D protoplanetary disk. We find a gradual depletion in water and carbon monoxide vapors inside the water's iceline, with carbon monoxide depleting slower than water. This effect increases the gaseous C/O and decreases the C/H ratio in this region to values similar to those found in WASP 12b's day side atmosphere. Giant planets whose envelopes were accreted inside the water's iceline should then display C/O values larger than those of their parent stars, making them members of the class of so-called carbon-rich planets.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.