Finding rocky asteroids around white dwarfs by their periodic thermal emission
Authors:
Lin et al
Abstract:
Since old white dwarfs are exceptionally dim, the contrast between the thermal emission of an orbiting object and a white dwarf is dramatically enhanced compared to a main sequence host. Furthermore, rocky objects much smaller than the moon have no atmospheres and are tidally locked to the white dwarf if they orbit near the Roche zone. We show that this leads to temperature contrasts between their day and night side of order unity that should lead to temporal variations in infrared flux over an orbital period of ~ 0.2 to ~ 2 days. Ground based telescopes could detect objects with a mass as small as 1% of the lunar mass ML around Sirius B with a few hours of exposure. The James Webb Space Telescope (JWST) may be able to detect objects as small as 10−3ML around most nearby white dwarfs. The tightest constraints will typically be placed on 12,000 K white dwarfs, whose Roche zone coincides with the dust sublimation zone. Constraining the abundance of minor planets around white dwarfs as a function of their surface temperatures (and therefore age) provides a novel probe for the physics of planetary formation.
Saturday, August 30, 2014
Detecting Rocky Asteroids Around White Dwarfs
Labels:
asteroids,
white dwarf
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.