A Combined Spitzer and Herschel Infrared Study of Gas and Dust in the Circumbinary Disk Orbiting V4046 Sgr
Authors:
Rapson et al
Abstract:
We present results from a spectroscopic Spitzer and Herschel mid-to-far-infrared study of the circumbinary disk orbiting the evolved (age ~12-23 Myr) close binary T Tauri system V4046 Sgr. Spitzer IRS spectra show emission lines of [Ne II], H_2 S(1), CO_2 and HCN, while Herschel PACS and SPIRE spectra reveal emission from [O I], OH, and tentative detections of H_2O and high-J transitions of CO. We measure [Ne III]/[Ne II] < 0.13, which is comparable to other X-ray/EUV luminous T Tauri stars that lack jets. We use the H_2 S(1) line luminosity to estimate the gas mass in the relatively warm surface layers of the inner disk. The presence of [O I] emission suggests that CO, H_2O, and/or OH is being photodissociated, and the lack of [C I] emission suggests any excess C may be locked up in HCN, CN and other organic molecules. Modeling of silicate dust grain emission features in the mid-infrared indicates that the inner disk is composed mainly of large (r~5 um) amorphous pyroxene and olivine grains (~86% by mass) with a relatively large proportion of crystalline silicates. These results are consistent with other lines of evidence indicating that planet building is ongoing in regions of the disk within ~30 AU of the central, close binary.
Sunday, August 16, 2015
Combined Spitzer and HerschelStudy of V4046 Sgr's Circumbinary Disk
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.