Thursday, September 17, 2015

Hot Jupiter HD 189733b may Have a Thin, Leading bow Shock

Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b
Authors:

Cauley et al

Abstract:

Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 planetary radii. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large equatorial planetary magnetic field strength of 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.