Protostellar spin-down: a planetary lift?
Authors:
Bouvier et al
Abstract:
When they first appear in the HR diagram, young stars rotate at a mere 10 per cent of their break-up velocity. They must have lost most of the angular momentum initially contained in the parental cloud, the so-called angular momentum problem. We investigate here a new mechanism by which large amounts of angular momentum might be shed from young stellar systems, thus yielding slowly rotating young stars. Assuming that planets promptly form in circumstellar discs and rapidly migrate close to the central star, we investigate how the tidal and magnetic interactions between the protostar, its close-in planet(s), and the inner circumstellar disc can efficiently remove angular momentum from the central object. We find that neither the tidal torque nor the variety of magnetic torques acting between the star and the embedded planet are able to counteract the spin-up torques due to accretion and contraction. Indeed, the former are orders of magnitude weaker than the latter beyond the corotation radius and are thus unable to prevent the young star from spinning up. We conclude that star–planet interaction in the early phases of stellar evolution does not appear as a viable alternative to magnetic star–disc coupling to understand the origin of the low angular momentum content of young stars.
Saturday, October 17, 2015
Does Planetary Formation Help Spin Down Their Protostars?
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.