Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio
Authors:
Lorek et al
Abstract:
Comets are remnants of the icy planetesimals that formed beyond the ice line in the Solar Nebula. Growing from micrometre-sized dust and ice particles to km-sized objects is, however, difficult because of growth barriers and time scale constraints. The gravitational collapse of pebble clouds that formed through the streaming instability may provide a suitable mechanism for comet formation.
We study the collisional compression of cm-sized porous ice/dust-mixed pebbles in collapsing pebble clouds. For this, we developed a collision model for pebbles consisting of a mixture of ice and dust, characterised by their dust-to-ice mass ratio. Using the final compression of the pebbles, we constrain combinations of initial cloud mass, initial pepple porosity, and dust-to-ice ratio that lead to cometesimals which are consistent with observed bulk properties of cometary nuclei.
We find that observed high porosity and low density of ~0.5 g/cc of comet nuclei can only be explained if comets formed in clouds with mass approximately M>1e18 g. Lower mass clouds would only work if the pebbles were initially very compact. Furthermore, the dust-to-ice ratio must be in the range of between 3 and 9 to match the observed bulk properties of comet nuclei. (abridged version)
Friday, April 8, 2016
Comet Formation in Collapsing Pebble Clouds
Labels:
comets,
exocomets,
pebble accretion,
protoplanetary disks
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.