Is There a Temperature Limit in Planet Formation at 1000 K?
Authors:
Demirci et al
Abstract:
Dust drifting inward in protoplanetary disks is subject to increasing temperatures. In laboratory experiments, we tempered basaltic dust between 873 K and 1273 K and find that the dust grains change in size and composition. These modifications influence the outcome of self-consistent low speed aggregation experiments showing a transition temperature of 1000\,K. Dust tempered at lower temperatures grows to a maximum aggregate size of 2.02±0.06 mm, which is 1.49±0.08 times the value for dust tempered at higher temperatures. A similar size ratio of 1.75±0.16 results for a different set of collision velocities. This transition temperature is in agreement with orbit temperatures deduced for observed extrasolar planets. Most terrestrial planets are observed at positions equivalent to less than 1000 K. Dust aggregation on the millimeter-scale at elevated temperatures might therefore be a key factor for terrestrial planet formation.
Saturday, October 28, 2017
Is There a Temperature Limit in Planet Formation at 1000 K?
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.