The debris disc of solar analogue τ Ceti: Herschel observations and dynamical simulations of the proposed multiplanet system
Authors:
Lawler et al
Abstract:
τ Ceti is a nearby, mature G-type star very similar to our Sun, with a massive Kuiper Belt analogue and possible multiplanet system that has been compared to our Solar system. We present Herschel Space Observatory images of the debris disc, finding the disc is resolved at 70 μm and 160 μm, and marginally resolved at 250 μm. The Herschel images and infrared photometry from the literature are best modelled using a wide dust annulus with an inner edge between 1 and 10 au and an outer edge at ∼55 au, inclined from face-on by 35° ± 10°, and with no significant azimuthal structure. We model the proposed tightly packed planetary system of five super-Earths and find that the innermost dynamically stable disc orbits are consistent with the inner edge found by the observations. The photometric modelling, however, cannot rule out a disc inner edge as close to the star as 1 au, though larger distances produce a better fit to the data. Dynamical modelling shows that the five-planet system is stable with the addition of a Neptune or smaller mass planet on an orbit outside 5 au, where the radial velocity data analysis would not have detected a planet of this mass.
Friday, September 19, 2014
Debris Disk Detected at Tau Ceti: Only Neptune or Smaller Worlds Possible Past 5 AU
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.