Thursday, October 16, 2014

HR 8799d is NOT Coplanar With the Rest of HR 8799's Exoplanetary System

Reconnaissance of the HR 8799 Exosolar System II: Astrometry and Orbital Motion


Pueyo et al


We present an analysis of the orbital motion of the four sub-stellar objects orbiting HR8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph + Integral Field Spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an Extreme Adaptive Optics system (PALM-3000), a coronagraph and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectro-photometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. While the astrometric history is currently too scarce to formally rule out coplanarity, HR8799d appears to be misaligned with respect to the most likely planes of HR8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR8799de have dynamical masses below 13 M_Jup using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.