Monday, October 13, 2014

Magnetically Controlled Outflows From hot Jupiter Atmospheres

Magnetically Controlled Outflows from Planets


Adams et al


Hot Jupiters can experience mass loss driven by heating from UV radiation from their host stars, and this flow is often controlled by magnetic fields. More specifically, near the planetry surface, the magnetic pressure dominates the ram pressure of the outflow by several orders of magnitude. After leaving the vicinity of the planet, the flow must connect onto the background environment provided by the stellar wind and the stellar magnetic field. This contribution considers magnetically controlled planetary outflows and extends previous work by comparing two different geometries for the background magnetic field provided by the star. In the first case, stellar field is assumed to retain the form of a dipole, which is anti-aligned with the dipole field of the planet. In the second case, the stellar outflow opens up the stellar magnetic field structure so that the background field at the location of the planet is perpendicular to the planetary dipole. Using numerical simulations, we consider the launch of the planetary wind with these field configurations.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.