Characterizing the brown dwarf formation channels from the IMF and binary-star dynamics
Authors:
Thies et al
Abstract:
The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties to reproduce the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa-IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term accounting for additional formation channels like disk or filament fragmentation. The term "peripheral fragmentation" is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction as well as the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion-mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply these form just like stars in direct fragmentation.
Friday, January 23, 2015
How to Form a Brown Dwarf
Labels:
brown dwarf,
brown dwarf formation
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.