Monday, December 26, 2016

The Earth Similiarity Index


Authors:

Kashyap et al

Abstract:

Study of exoplanets is the holy grail of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth\-the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity, it is difficult to determine its value. Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets for further analysis with our graphical methodology. ESI is a first step in determining potential exo-habitability that may not be very similar to a known life. A new approach, called Mars Similarity Index (MSI), is introduced to identify planets that may be habitable to the extreme forms of life.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.