Authors:Huang et alAbstract:The hundreds of multiple planetary systems discovered by the Kepler mission are typically observed to reside in close-in (≲0.5 AU), low-eccentricity, and low-inclination orbits. We run N-body experiments to study the effect that unstable outer (≳1 AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple Super-Earth systems. Our experiments show that the giant planets greatly reduce the multiplicity of the inner Super-Earths and the surviving population can have large eccentricities (e≳0.3) and inclinations (i≳20∘) at levels that anti-correlate with multiplicity. Consequently, this model predicts the existence of a population of dynamically hot single-transiting planets with typical eccentricities and inclinations in the ranges of ∼0.2−0.5 and ∼10∘−40∘. We show that these results can explain the following observations: (i) the recent eccentricity measurements of Kepler super-Earths from transit durations, (ii) the tentative observation that single-transiting systems have a wider distribution of stellar obliquity angles compared to the multiple-transiting systems; (iii) the architecture of some eccentric super-Earths discovered by Radial Velocity surveys such as HD125612c. Future observations from TESS will reveal many more dynamically hot single transiting planets, for which follow up Radial Velocity studies will be able to test our models and see whether they have outer giant planets.
Tuesday, January 17, 2017
Dynamically hot Super-Earths from outer giant planet scattering
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.