Thursday, November 23, 2017

The discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert

The discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert
Authors:


Demangeon et al 
Abstract:
To investigate the origin of the features discovered in the exoplanet population, the knowledge of exoplanets' mass and radius with a good precision is essential. In this paper, we report the discovery of three transiting exoplanets by the SuperWASP survey and the SOPHIE spectrograph with mass and radius determined with a precision better than 15 %. WASP-151b and WASP-153b are two hot Saturns with masses, radii, densities and equilibrium temperatures of 0.31^{+0.04}_{-0.03} MJ, 1.13^{+0.03}_{-0.03} RJ, 0.22^{-0.03}_{-0.02} rhoJ and 1, 290^{+20}_{-10} K, and 0.39^{+0.02}_{-0.02} MJ, 1.55^{+0.10}_{-0.08} RJ, 0.11^{+0.02}_{-0.02} rhoJ and 1, 700^{+40}_{-40} K, respectively. Their host stars are early G type stars (with magV ~ 13) and their orbital periods are 4.53 and 3.33 days, respectively. WASP-156b is a Super-Neptune orbiting a K type star (magV = 11.6) . It has a mass of 0.128^{+0.010}_{-0.009} MJ, a radius of 0.51^{+0.02}_{-0.02} RJ, a density of 1.0^{+0.1}_{-0.1} rhoJ, an equilibrium temperature of 970^{+30}_{-20} K and an orbital period of 3.83 days. WASP-151b is slightly inflated, while WASP-153b presents a significant radius anomaly. WASP-156b, being one of the few well characterised Super-Neptunes, will help to constrain the formation of Neptune size planets and the transition between gas and ice giants. The estimates of the age of these three stars confirms the tendency for some stars to have gyrochronological ages significantly lower than their isochronal ages. We propose that high eccentricity migration could partially explain this behaviour for stars hosting a short period planet. Finally, these three planets also lie close to (WASP-151b and WASP-153b) or below (WASP-156b) the upper boundary of the Neptunian desert. Their characteristics support that the ultra-violet irradiation plays an important role in this depletion of planets observed in the exoplanet population.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.