Authors:Kreidberg et alAbstract:The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere characterization. It has an unusually large atmospheric scale height and a small, bright host star, raising the possibility of precise constraints on its current nature and formation history. We report the first atmospheric study of WASP-107b, a Hubble Space Telescope measurement of its near-infrared transmission spectrum. We determined the planet's composition with two techniques: atmospheric retrieval based on the transmission spectrum and interior structure modeling based on the observed mass and radius. The interior structure models set a 3σ upper limit on the atmospheric metallicity of 30× solar. The transmission spectrum shows strong evidence for water absorption (6.5σ confidence), and we infer a water abundance consistent with expectations for a solar abundance pattern. On the other hand, methane is depleted relative to expectations (at 3σ confidence), suggesting a low carbon-to-oxygen ratio or high internal heat flux. The water features are smaller than predicted for a cloudless atmosphere, crossing less than one scale height. A thick condensate layer at high altitudes (0.1 - 3 mbar) is needed to match the observations; however, we find that it is challenging for physically motivated cloud and haze models to produce opaque condensates at these pressures. Taken together, these findings serve as an illustration of the diversity and complexity of exoplanet atmospheres. The community can look forward to more such results with the high precision and wide spectral coverage afforded by future observing facilities.
Wednesday, November 1, 2017
Water, Methane Depletion, and High-Altitude Condensates in the Atmosphere of the Warm Super-Neptune WASP-107b
Labels:
exoatmosphere,
exoplanet characteristics,
methane,
super neptune,
warm neptunes,
wasp-107b,
water
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.