Friday, December 19, 2014

Close-in Exoplanets Around White Dwarfs Detected

Detectable close-in planets around white dwarfs through late unpacking


Veras et al


Although 25%-50% of white dwarfs (WDs) display evidence for remnant planetary systems, their orbital architectures and overall sizes remain unknown. Vibrant close-in (~1 Solar radius) circumstellar activity is detected at WDs spanning many Gyrs in age, suggestive of planets further away. Here we demonstrate how systems with 4 and 10 closely-packed planets that remain stable and ordered on the main sequence can become unpacked when the star evolves into a WD and experience pervasive inward planetary incursions throughout WD cooling. Our full-lifetime simulations run for the age of the Universe and adopt main sequence stellar masses of 1.5, 2.0 and 2.5 Solar masses, which correspond to the mass range occupied by the progenitors of typical present-day WDs. These results provide (i) a natural way to generate an ever-changing dynamical architecture in post-main-sequence planetary systems, (ii) an avenue for planets to achieve temporary close-in orbits that are potentially detectable by transit photometry, and (iii) a dynamical explanation for how residual asteroids might pollute particularly old WDs.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.