Friday, October 14, 2016

The microlensing rate and distribution of free-floating planets towards the Galactic bulge

The microlensing rate and distribution of free-floating planets towards the Galactic bulge


Ban et al


Ground-based optical microlensing surveys have provided tantalising, if inconclusive, evidence for a significant population of free-floating planets (FFPs). Both ground and space-based facilities are being used and developed which will be able to probe the distrubution of FFPs with much better sensitivity. It is vital also to develop a high-precision microlensing simulation framework to evaluate the completeness of such surveys. We present the first signal-to-noise limited calculations of the FFP microlensing rate using the Besancon Galactic model. The microlensing distribution towards the Galactic centre is simulated for wide-area ground-based optical surveys such as OGLE or MOA, a wide-area ground-based near-IR survey, and a targeted space-based near-IR survey which could be undertaken with Euclid or WFIRST. We present a calculation framework for the computation of the optical and near-infrared microlensing rate and optical depth for simulated stellar catalogues which are signal-to-noise limited, and take account of extinction, unresolved stellar background light and finite source size effects, which can be significant for FFPs. We find that the global ground-based I-band yield over a central 200 deg^2 region covering the Galactic centre ranges from 20 Earth-mass FFPs year^-1 up to 3,500 year^-1 for Jupiter FFPs in the limit of 100% detection efficiency, and almost an order of magnitude larger for a K-band survey. For ground-based surveys we find that the inclusion of finite source and the unresolved background reveals a mass-dependent variation in the spatial distribution of FFPs. For a space-based H-band covering 2 deg^2, the yield depends on the target field but maximizes close to the Galactic centre with around 76 Earth through to 1,700 Jupiter FFPs year^-1. For near-IR space-based surveys the spatial distribution of FFPs is found to be largely insensitive to the FFP mass scale.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.