Cloudless atmospheres for L/T dwarfs and extra-solar giant planets
Authors:
Tremblin et al
Abstract:
The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BD) since their first detections twenty years ago, has always been the key role played by micron-size condensates, called "dust" or "clouds", in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this paper, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.
Friday, February 5, 2016
Cloudless Atmospheres for Brown Dwarfs and Gas Giants
Labels:
brown dwarf,
clouds,
exoatmosphere,
gas giants,
giant planets,
L class,
L dwarf,
T class,
T Dwarf
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.