Brown dwarfs are smaller than stars, but more massive than giant planets. As such, they provide a natural link between astronomy and planetary science. However, they also show incredible variation when it comes to size, temperature, chemistry, and more, which makes them difficult to understand, too.
New work led by Carnegie's Jacqueline Faherty surveyed various properties of 152 suspected young brown dwarfs in order to categorize their diversity and found that atmospheric properties may be behind much of their differences, a discovery that may apply to planets outside the solar system as well. The work is published by The Astrophysical Journal Supplement Series.
Scientists are very interested in brown dwarfs, which hold promise for explaining not just planetary evolution, but also stellar formation. These objects are tougher to spot than more-massive and brighter stars, but they vastly outnumber stars like our Sun. They represent the smallest and lightest objects that can form like stars do in the Galaxy so they are an important "book end" in Astronomy.
For the moment, data on brown dwarfs can be used as a stand-in for contemplating extrasolar worlds we hope to study with future instruments like the James Webb Space Telescope.
"Brown dwarfs are far easier to study than planets, because they aren't overwhelmed by the brightness of a host star," Faherty explained.
But the tremendous diversity we see in the properties of the brown dwarf population means that there is still so much about them that remains unknown or poorly understood.
link.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.