A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458b
Authors:
Tsiaras et al
Abstract:
The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently one of the most popular instruments for observing exoplanetary atmospheres, especially with the use of the spatial scanning technique. An increasing number of exoplanets have been studied using this technique as it enables the observation of bright targets without saturating the sensitive detectors. In this work we present a new pipeline for analysing the data obtained with the spatial scanning technique, starting from the raw data provided by the instrument. In addition to commonly used correction techniques, we take into account the geometric distortions of the instrument, whose impact may become important when combined to the scanning process. Our approach can improve the photometric precision for existing data and also push further the limits of the spatial scanning technique, as it allows the analysis of even longer spatial scans. As an application of our method and pipeline, we present the results from a reanalysis of the spatially scanned transit spectrum of HD 209458b. We calculate the transit depth per wavelength channel with an average relative error of 40 ppm. We interpret the final spectrum with T-REx, our line-by-line fully bayesian spectral retrieval code, which confirms the presence of water vapour and investigates the additional presence of NH3, HCN and clouds in the atmosphere of HD 209458b. The narrow wavelength range limits our ability to disentangle the degeneracy between a cloudy atmosphere or a water-poor atmosphere. Additional data over a broader spectral range are needed to address this issue.
Thursday, January 21, 2016
The Transmission Spectra of HD 209458b
Labels:
ammonia,
gas giants,
giant planets,
HD 209458b,
hot jupiters,
hubble,
transmission spectra,
water
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.