Wednesday, August 30, 2017

A Massive Jupiter orbiting the very low metallicity giant star BD+03 2562 and a possible planet around HD 103485

Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V.: A Massive Jupiter orbiting the very low metallicity giant star BD+03 2562 and a possible planet around HD~103485

Authors:


Villaver et al

Abstract:
We present two evolved stars from the TAPAS (Tracking Advanced PlAnetary Systems) with HARPS-N project devoted to RV precision measurements of identified candidates within the PennState - Torun Centre for Astronomy Planet Search. Evolved stars with planets are crucial to understand the dependency of the planet formation mechanism on the mass and metallicity of the parent star and to study star-planet interactions. The paper is based on precise radial velocity (RV) measurements, for HD 103485 we collected 57 epochs over 3317 days with the Hobby-Eberly Telescope and its High Resolution Spectrograph and 18 ultra-precise HARPS-N data over 919 days. For BD+03 2562 we collected 46 epochs of HET data over 3380 days and 19 epochs of HARPS-N data over 919 days. We present the analysis of the data and the search for correlations between the RV signal and stellar activity, stellar rotation and photometric variability. Based on the available data, we interpret the RV variations measured in both stars as Keplerian motion. Both stars have masses close to Solar (1.11 and 1.14), very low metallicities ([Fe/H]=-0.50 and -0.71), and, both have Jupiter planetary mass companions (m sin i=7 and 6.4 Mj), in close to terrestrial orbits (1.4 and 1.3~au), with moderate eccentricities (e=0.34 and 0.2). However, we cannot totally exclude that the signal in the case of HD~103485 is due to rotational modulation of active regions. Based on the current data, we conclude that BD+03 2562 has a bona fide planetary companion while for HD 103485 we cannot totally exclude that the best explanation for the RV signal modulations is not the existence of a planet but stellar activity. If, the interpretation remains that both stars have planetary companions they represent systems orbiting very evolved stars with very low metallicities, a challenge to the conditions required for the formation of massive giant gas planets.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.