Sunday, August 20, 2017

In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs

Authors:


Coleman et al

Abstract:
The core accretion hypothesis posits that planets with significant gaseous envelopes accreted them from their protoplanetary discs after the formation of rocky/icy cores. Observations indicate that such exoplanets exist at a broad range of orbital radii, but it is not known whether they accreted their envelopes in situ, or originated elsewhere and migrated to their current locations. We consider the evolution of solid cores embedded in evolving viscous discs that undergo gaseous envelope accretion in situ with orbital radii in the range 0.1−10au. Additionally, we determine the long-term evolution of the planets that had no runaway gas accretion phase after disc dispersal. We find: (i) Planets with 5M⊕ cores never undergo runaway accretion. The most massive envelope contained 2.8M⊕ with the planet orbiting at 10au. (ii) Accretion is more efficient onto 10M⊕ and 15M⊕ cores. For orbital radii ap≥0.5au, 15M⊕ cores always experienced runaway gas accretion. For ap≥5au, all but one of the 10M⊕ cores experienced runaway gas accretion. No planets experienced runaway growth at ap=0.1au. (iii) We find that, after disc dispersal, planets with significant gaseous envelopes cool and contract on Gyr time-scales, the contraction time being sensitive to the opacity assumed. Our results indicate that Hot Jupiters with core masses ≲15M⊕ at ≲0.1au likely accreted their gaseous envelopes at larger distances and migrated inwards. Consistently with the known exoplanet population, Super-Earths and mini-Neptunes at small radii during the disc lifetime, accrete only modest gaseous envelopes.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.