A Review of Potential Biosignature Detection Methods
Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life
Authors:
Schwieterman et al
Abstract:
In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has imprinted evidence of its presence upon the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earths biosphere, both in the present and through geologic time, for informative analogies of what signatures to search for elsewhere. Here we have compiled an overview of our current understanding of potential exoplanet biosignatures including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well-known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required for a given atmospheric signature. We focus particularly on advances made since the seminal review by Des Marais et al. (2002). The purpose of this work is not to propose new biosignatures strategies, a goal left to companion papers in this series, but to review the current literature and provide a foundation for a path forward.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.